
ARI Research Note 96-21

Tutoring: Guided Learning by Doing

Douglas C. Merrill
Institute for Education and Training—RAND

Brian J. Reiser and Shannon K. Merrill
Northwestern University

Shari Landes
Princeton University

Research and Advanced Concepts Office
Michael Drillings, Acting Director

January 1996

United States Army
Research Institute for the Behavioral and Social Sciences

Approved for public release; distribution is unlimited.

DTIC QUALITY INSPECTED 1

U.S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction
of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON
Director

Research accomplished under contract
for the Department of the Army

Northwestern University

Technical review by

Joseph Psotka

NOTICES

DISTRIBUTION: This report has been cleared for release to the Defense Technical Information
Center (DTIC) to comply with regulatory requirements. It has been given no primary distribution
other than to DTIC and will be available only through DTIC or the National Technical Information
Service (NTIS).

FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not
return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: The views, opinions, and findings in this report are those of the author(s) and should not
be construed as an official Department of the Army position, policy, or decision, unless so
designated by other authorized documents.

REPORT DOCUMENTATION PAGE

1. REPORT DATE
1996, January

2. REPORT TYPE

Final

4. TITLE AND SUBTITLE

Tutoring: Guided Learning by Doing

6. AUTHOR(S)

Douglas C. Merrill (Institute for Education and Training--RAND),
Brian J. Reiser and Shannon K. Merrill (Northwestern University),

and Shari Landes (Princeton University)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Northwestern University
Office of Research and Sponsored Programs
1891 Maple Avenue
Evanston, DL 60201

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Research Institute for the Behavioral and Social Sciences
ATTN: PERI-BR
5001 Eisenhower Avenue
Alexandria, VA 22333-5600

3. DATES COVERED (from... to)
August 1992-March 1994

5a. CONTRACT OR GRANT NUMBER

MDA903-92-C-0114

5b. PROGRAM ELEMENT NUMBER

0601102A
5c. PROJECT NUMBER

B74F
5d. TASK NUMBER

2901
5e. WORK UNIT NUMBER

C05
8. PERFORMING ORGANIZATION REPORT NUMBER

10. MONITOR ACRONYM

ARI

11. MONITOR REPORT NUMBER

Research Note 96-21

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

COR: Michael Drillings

14. ABSTRACT (Maximum 200 words):

Individualized instruction significantly improves students' pedagogical and motivated outcomes. In this paper, we seek to characterize
tutorial behaviors that could lead to these benefits and consider why these actions should be pedagogically useful. This experiment
examined students learning LISP programming with the assistance of a tutor. Tutoring sessions we audiotaped, allowing us to analyze
every verbal utterance during the sessions and thereby identify the conversational events that led to pedagogical success. This discourse
analysis suggests that tutors are successful because they take a very active role in leading the problem solving by offering confirmatory
feedback additional guidance while students are on profitable paths and error feedback after mistakes. However, tutor carefully
structure their feedback to allow students to perform as much of the work as possible while ensuring that problem solving stays on
track These results suggest the types of strategies tutors employ to facilitate guided learning by doing.

15. SUBJECT TERMS

Guided learning Tutoring Problem solving Pedagogy

SECURITY CLASSIFICATION OF

16. REPORT
Unclassified

17. ABSTRACT
Unclassified

18. THIS PAGE
Unclassified

19. LIMITATION OF
ABSTRACT

Unlimited

20. NUMBER
OF PAGES

108

21. RESPONSIBLE PERSON
(Name and Telephone Number)

TUTORING: GUIDED LEARNING BY DOING

CONTENTS

Abstract 2

Introduction

Method 13

Subjects 13

Materials 13

Procedure 14

Discourse Analysis Methods *->

Results and Discussion 25

How Tutors Keep Problem Solving Procedure 29
Errors and the Content of Feedback 36
What Did Students Do in the Error Recovery? 45
Generality of the Results 47

A Theory of Tutorial Guidance 50

Conclusion ^

References

71 Appendices /x

Appendix A ' *
Appendix B 73

Appendix C 84

Author Notes

Tables

85

86

Figure Captions lüü

Figures

Tutoring: Guided learning by doing

Abstract

Individualized instruction significantly improves students" pedagogical and motivational

outcomes. In this paper, we seek to characterize tutorial behaviors that could lead to these

benefits and consider why these actions should be pedagogically useful. This experiment

examined students learning LISP programming with the assistance of a tutor. Tutoring

sessions were audiotaped. allowing us to analyze every verbal utterance during the ses-

sions and thereby identify the conversational events that lead to pedagogical success. This

discourse analysis suggests that tutors are successful because they take a very active role

in leading the problem solving by offering confirmatory feedback and additional guidance

while students are on profitable paths and error feedback after mistakes. However, tutors

carefully structure their feedback to allow students to perform as much of the work as pos-

sible while the tutor ensures that problem solving stays on track. These results suggest the

types of strategies tutors employ to facilitate guided learning by doing.

Tutoring: Guided learning by doing 'o

Introduction

Novices often have great difficulty mastering new domains. It is generally accepted that

the best way to acquire new domain skills is by solving problems (Anderson. 1983: Laird.

Rosenbloom. k Newell. 1986: VanLehn. 1988). However, there are dangers inherent in

this sort of learning by doing. Floundering during problem solving often leads to working

memory overload, which interferes with learning (Sweller. 1988). Furthermore, errors during

problem solving can often lead to confusion and frustration. It is very difficult to learn from

problem solving episodes that consist largely of attempts to recover from errors (Anderson.

1983: Lewis k Anderson. 1985). Ameliorating these costs would allow students to gain the

maximum benefits of learning by doing.

Individualized instruction, or tutoring, considered by many to be the best method of

instruction, is one method for minimizing .these costs (Bloom. 1984: Cohen. Kulik. k Ku-

lik. 1982: Lepper. Aspinwall. Mumme, k Chabay. 1990). Individualized instruction has

both motivational and cognitive benefits. For example, tutoring leads students to feel more

competent (Lepper k Chabay. 1988). This feeling appears to be justified: tutored students

perform two standard deviations higher than their colleagues receiving traditional instruc-

tion, indicating that almost all tutored students perform better than the mean performance

of students receiving classroom instruction (Bloom. 1984). Yet although these pedagogical

benefits have been noted, their source has not been adequately characterized. The goal

of the present research is to investigate the strategies tutors use that can lead to these

benefits.

Merrill. Reiser. Ranney. and Trafton (1992) argued that tutors balance the goal of

allowing students to perform as much of the problem solving as possible with the goal

Tutoring: Guided learning by doing

of ensuring that problem solving remains productive. Rather than ietting students solve

problems on their own. with occasional advice, tutors carefully monitor the problem solving

to ensure that it stays on track and to help direct students back towards a productive

solution path when needed.. Thus, tutors offer a kind of guided learning by doing that

allows their students to attain the benefits of learning by doing while avoiding some of

the costs. In this paper, we examine how tutors achieve these benefits through careful

guidance and characterize the way tutorial interactions lead to strong learning advantages

for students.

We will describe the ways in which tutors guide and assist student learning while they

solve problems and work to understand new material. Furthermore, we characterize the

situations in which this guidance takes place. In fact, this guidance is not always easy

to identify. Examining an actual tutoring session reveals the complexity and subtlety of

the tutor's role. Table 1. a transcript of student-tutor discussion, shows a very interactive

relationship between student and tutor, with the student and tutor interrupting each other

frequently and occasionally completing the other's sentences.

Insert Table 1 about here

We examine tutorial guidance in a number of key sites for learning. First, we shall see

how tutors respond when students are on an appropriate solution path. Perhaps tutors

concentrate their assistance on helping students realize what they have done correctly and

understand its consequences. For example, the tutor commented that a step was correct in

lines 11. 17. and 19 of Table 1. thus encouraging the student to continue with that path in

the problem solving, and elaborated on a correct student action in line 9.

Then we turn to an examination of student-tutor interactions that follow a problem

Tutoring: Guided learning by doing

solving difficulty. Do tutors provide feedback after impasses? If so. what form does the

tutorial guidance take — are tutors very directive or subtle? Do they allow students to

find and repair their own mistakes, offering error feedback only when the student asks, or

instead intervene frequently to point out errors? For example, in line number 4 of Table 1.

the tutor noticed that the student had failed to include.a required quotation mark and

simply told the student how to fix it — thus not allowing the student to find the error

herself.

The goal of this investigation is not only to characterize of the range of tutorial strate-

gies, but also to identify the factors that influence when tutors intervene and the intervention

strategies they use. It should be possible to determine these factors by identifying patterns

and consequences of tutorial intervention. Several researchers have identified tutorial guid-

ance methods (e.g., Fox. 1991: Graesser. Person. &; Huber. 1993; Lepper et al.. 1990: Lepper

& Chabay, 1988; Littman. Pinto. & Soloway, 1990; McArthur. Stasz. & Zmuidzinas, 1990).

By and large, these researchers have focused on a few central episodes that occurred during

longer tutoring sessions. Each of these analyses has highlighted some of the characteristics

of tutorial behavior, thus revealing particular aspects of tutorial strategies rather than a

broad range of behaviors and the situations in which they arise. Our work examines behav-

iors in a larger context over a longer period of time to capture the interplay of these and

other tutorial behaviors with student problem solving. We first review the various views

of tutoring suggested by previous research, displaying the complexity of factors affecting

tutorial behavior, and then formulate the questions that drive our approach.

Fox (1991) argued that tutors provide a "safety net'' for students, keeping them from

going off track by offering frequent confirmatory feedback. Tutors provided a confirmation

Tutoring: Guided learning by doing •"o

(e.g., "Yes") to each student step, but if it was delayed by as little as a second after the

step, the student presumed an error had occurred and began a repair. The tutor helped

with the repair as needed, even to the extent of providing the correct answer if necessary.

However, generally tutors tr-ied to remain as subtle and unobtrusive as possible. Thus.

Fox characterized feedback as primarily though not completely confirmatory, keeping the

student going on productive paths. The absence of confirmatory feedback was seen by

students as a signal that an error had occurred.

Lepper and his colleagues have also considered how tutors scaffold students' learning,

but have concentrated on the motivational aspects of tutorial feedback (Lepper et al.. 1990:

Lepper k Chabay. 1988). They argued that a major goal of tutors is to keep students from

becoming discouraged and from blaming themselves when problem solving difficulties are

encountered. The tutors accomplished this in two ways. First, they emphasized that the

problems were hard, thereby redirecting the blame from the students to the problems, and

permitting students to attribute the errors to the difficulty of the problems rather than

to a lack of ability. Second, rather than telling students how to repair errors. Lepper"s

tutors asked leading questions that helped students identify and repair errors themselves.

Similarly, some teachers use questions and counter-examples to help students uncover faults

in their own reasoning (Collins k Stevens. 1982: Collins. Warnock. k Passafiume. 1975).

These analyses suggest that tutors keep students feeling successful by allowing them to

find and repair errors, thereby feeling in control of the problem solving (cf.. Scardamalia.

Bereiter. McLean. Swallow, k Woodruff. 1989), and to blame errors on external factors.

The Fox (1991) and Lepper et al. (1990) studies suggest that much of the work in tutoring

sessions is performed by the student, even after errors. The tutor takes advantage of

Tutoring: Guided learning by doing

opportunities to help students remain sure of themselves and their problem solving success,

and to ensure that students notice any errors. The students are primarily responsible for

repairing errors, but the tutor will scaffold the process as needed by asking leading questions

and providing the occasional correct answer.

Putnam (1987) also argued that tutors are primarily interested in getting students

to complete the material. However. Putnam proposed that tutors rely not primarily on

opportunistic planning, but on curriculum scripts that suggest a loosely ordered set of tasks

to perform during a session to guide the session. These curriculum scripts are plans that

vary little across sessions. In this view, errors are not particularly important opportunities

to increase student understanding. Instead, tutors try to get students back on to a correct

track by giving the answer to the problem.

Much as Fox (1991) and Lepper et al. (1990) focused upon the active role of the students.

Graesser et al. (1993) argued that tutoring is successful because sessions are structured to

allow students the opportunity to learn actively through their own questions. Indeed,

students ask approximately 100 times more questions during tutoring than in classroom

situations (Kerry. 1987). and learning through asking questions may be superior to more

passive learning (Graesser et al.. 1993). Interestingly, students often fail to understand

questions they are asked or the answers to their own questions, and thus tutors must

collaborate with students to clarify the meaning of questions and answers. Graesser (1993)

argued that these interactions of question, answer, and collaborative search for meaning

form a five step script, called a dialog frame. Dialog frames are employed throughout

tutoring sessions to guide students' knowledge acquisition and problem solving.

Other researchers have focused on the role of errors in triggering curriculum scripts. For

Tutoring: Guided learning by doing

example. Littman et al. (1990) provided tutors with students' PASCAL programs and asked

them to plan an intervention. They found that the tutors structured the entire interaction

around feedback for errors. The tutors used a great deal of domain knowledge about the

causes and severity of errors,io decide upon an order for remediating them, and planned to

offer very directive feedback during the remediation (Littman, 1991). In fact, these tutors

used tutorial -planning Schemas based upon these errors that guided the tutorial sessions.

Planning Schemas arise out of both domain knowledge and tutoring knowledge, and capture,

for example, the fact that repairing an error might be necessary before some other error

could be examined, or several errors might be indicators of the same deep confusion. These

Schemas allow tutors to develop an optimal structure for the tutoring session that maximizes

the success of student repairs.

McArthur et al. (1990) and Schoenfeld. Gamoran. Kessel, and Leonard (1992) have also

argued that tutors use scripts to guide their behavior, but have extended their analyses

to other kinds of student behaviors besides errors as triggers for a script. These scripts.

sometimes called tutorial microplans (McArthur et al.. 1990), can be triggered by various

actions, including errors, new problem solving goals, and pedagogical goals. Like tutorial

planning Schemas, microplans are used to decide how to respond to a student action, with

each microplan generating one or many tutorial responses. However, because microplans

can be activated by actions other than errors, they offer tutors the flexibility to respond

to students' individual needs and confusions while still accomplishing general pedagogical

goals. For example, according to McArthur et al. (1990). tutors often remind students of

what they are doing and why it is being done, thereby keeping them aware of problem

solving goals.

Tutoring: Guided learning by doing

This brief review of tutoring has revealed two foci of tutoring research. Some researchers

(e.g.. Fox. 1991: Lepper k Chabav. 1988) have focused upon the content of tutorial utter-

ances, whereas others (e.g.. Littman et al.. 1990: McArthur et al.. 1990: Putnam. 1987:

Schoenfeld et al.. 1992) have largely focused upon the ways that tutors organize sessions.

These two dimensions are essentially independent — tutorial scripts do not necessarily

specify the type of feedback to be given.

These studies have revealed a range of tutorial behaviors, including a focus on positive

outcomes (Fox. 1991). the subtle nature of tutorial guidance (Fox. 1991: Lepper et al.. 1990).

the assistance of tutorial guidance in helping to structure the problem solving (McArthur

et al.. 1990: Putnam. 1987: Schoenfeld et al.. 1992). and response to student errors (Littman

et al.. 1990). Many of these findings reveal the active role of students in problem solving

(Fox. 1991), questioning (Graesser et al.. 1993). and repairing errors (Fox. 1991: Graesser

et al. 1993). Part of this variation in these tutorial behaviors is presumably due to varia-

tions in the problem solving context. These studies varied in factors such as the age of the

students and the tutors, whether the session was remedial or was covering the material for

the first time, whether the students' participation was voluntary or required, and so on.

In general, these tutoring studies have examined portions of tutoring sessions and have

characterized certain interactions of theoretical interest. Although these snapshots of tutor-

ing have cast a great deal of light on the tutorial process, the complete picture of tutoring

has yet to be developed. Developing a model of tutoring that characterizes the ways in

which tutorial assistance leads to pedagogical success requires examining tutoring over a

long period of time with a variety of students to examine the various contexts in which

different tutorial behaviors may arise. Presumably, all of the above theories describe differ-

Tutoring: Guided learning by doing

ent aspects of the range of tutorial behavior. Previous work has not yet analyzed complete

tutorial sessions with the aim of characterizing the contexts giving rise to the full range of

tutorial assistance.

The goal of the study presented here is to describe the situations that lead tutors to

behave in the ways we have just reviewed. We will argue that tutors guide problem solving

in two principal manners and that the situational characteristics affect the manner chosen

and the formation of the guidance. First, they offer rapid and explicit feedback to student

actions that tells the student whether or not the action was correct. Second, in the event

of a mistake, students and tutors collaborate in repairing the error. Tutors carefully choose

feedback to allow students to perform many components of the error recovery process

(Merrill et al. 1992). Furthermore, we will use these behavioral findings along with other

problem solving research to offer a potential explanation for the success of tutoring.

To investigate these issues, we designed a controlled learning task, in which computer

novices learned basic programming concepts with the assistance of a tutor. The data pre-

sented here were gathered in an experiment contrasting students working a preset curricula

of LISP programming problems in four different learning environments. In this paper, we

present data from two of the four conditions. The first condition was a traditional one-

on-one tutoring situation, in which students solved LISP programming problems with the

constant assistance of a tutor. To allow us to explore tutors' means of guidance, we audio-

taped all verbal interactions between student and tutor. We used two different tutors, each

with significant tutoring experience, to increase the diversity of behaviors that would be

revealed by the discourse analysis of the tutorial interactions. The goal of this analysis is to

characterize tutorial actions in long-term interventions that cover a wide range of material.

10

Tutoring: Guided learning by doing

Thus, we chose TO emphasize depth of interaction with each tutor rather than number of

tutors.

As we have noted, it is plausible that many factors affect tutorial behavior, such as the

domain being studied, the age of the students, and whether the session is remedial or not.

This study uses non-remedial sessions and college-aged students, and thus examines one

possible subset of the space of tutorial possibilities. We focused on students learning new

material because these sessions are likely to encompass a range of problem solving scenarios,

including those in which the student succeeds and those in which the student encounters

obstacles.

The control condition for this paper, called the independent problem solving condition,

consisted of novices covering the same material and solving the same problems, but without

tutorial assistance. Verbalizations were not recorded in this condition.

This study includes approximately 50 hours of student-tutor verbal interactions. To an-

alyze these data, we used a style of discourse analysis similar to protocol analysis (Ericsson

k Simon. 1984). to examine the contexts in which different tutorial actions arise and the

outcomes of these actions. Our version of this technique is quite similar to discourse anal-

ysis in that it analyzes the language of two or more people talking during problem solving

to reveal the actions employed during these dialogues. The important theoretical claim of

protocol analysis and of our approach to discourse analysis is that the researcher cannot

presume to have full access to the mental states of the problem solvers, and so must focus

solely upon that information that is completely explicit in the participants' utterances.

By looking at patterns of utterances, a researcher attains limited access to the mental

processes made while solving a problem based only on the information to which the subject

11

Tutoring: Guided learning by doing

is attending as well as any inferences, assertions, or questions made explicit by the subject.

The researcher develops categories based upon the explicit content of each utterance, not

what the researcher believes the speaker meant, and categorizes all utterances made during

the task (Bakeman L Gottman. 1986). These categorizations specify the various problem

solving events that occur on the way to a solution. This technique allows us to look

for contingencies between problem solving context and tutorial action by examining the

transitions from one sort of event to another.

We developed a coding scheme containing 36 categories designed to capture the full

range of both student and tutor behaviors during problem solving. For example, we had

categories for utterances such as a student asking for help, setting a goal, or generating a

concrete example, as well as for tutorial actions such as error feedback or goal setting (the

complete scheme is described below). We categorized each and every utterance made by

tutor or student during the approximately 50 hours of sessions. Thus, this study presents

a fine-grained picture of tutoring over an extended period of problem solving.

These extended microanalyses enable us to examine tutorial behaviors across many dif-

ferent contexts within each student and with different students to determine which aspects

of the behaviors are components of successful tutoring in this type of domain. In sum.

this study enables us to characterize the ways tutors assist problem solving in procedural

domains and to develop a model to show how these behaviors make tutors so successful.

12

Tutoring: Guided learning hv doim 'o

Method

Subjects

The subjects in the overall experiment were 16 Princeton university undergraduates

and graduate students recruited through sign-up sheets on campus (eight in the one-on-

one tutoring condition and eight in the independent problem solving condition). Students

were randomly assigned to conditions, and were paid S5.0Ü per hour for their participation.

The participants included an equal number of males and females, all with no previous

programming experience. To minimize individual differences across conditions, gender and

Math SAT. a good predictor of success in learning to program (Mayer. Dyck. k Vilberg.

1986). were roughly balanced across conditions. The overall mean Math SAT of the subjects

was 690.

Students in the one-on-one tutoring condition were matched with a tutor of the same

gender. Two Princeton University undergraduates acted as tutors in this experiment. The

female tutor had previous experience tutoring math and science in high school, and was an

experienced LISP programmer. The male tutor had experience teaching LOGO to students

in summer camps; he was also an experienced LISP programmer. Both tutors were unaware

of the goals of the study.

Materials

The students worked 56 problems interspersed throughout the first three chapters of

an introductory LISP textbook. Essential LISP (Anderson. Corbett. L Reiser. 1987). The

three chapters amounted to roughly 50 pages of text, and introduced 25 built-in LISP

functions, variables and constants, the form of basic function definitions, and the use oi

13

Tutoring: Guided learning by doing

conditionals.

We constructed two cumulative posttests that covered material in the second and third

chapters. These pencil-and-paper posttests consisted of problems requiring students to

generate LISP programs to £olve small problems, to find and repair errors in previously

generated programs, and to give the output of LISP functions with given input values.

The students were able to work at all times during the learning session on a computer

terminal running a LISP interpreter that had been modified to store and timestamp all

keystrokes the students made. The interpreter did not contain the traditional LISP debug-

ging mode, which often confuses novices. There was also a simple screen editor available

for the students to use to edit function definitions.

Procedure

Students were told to read the material in the textbook and to attempt to solve the

problem sets intermixed in the chapters. The students received a demonstration of the

computer system at the beginning of the first session and a demonstration of the editing

facilities at the beginning of the second session. In addition to the 56 assigned problems,

all students took the untimed posttests after the second and third chapters. Students were

allowed to work at their own pace, and took between 5 and 10 hours to complete the task,

distributed over three to five days. They were free to refer to the text at any time. All

students completed all problems correctly.

One-on-one tutoring: Subjects in the one-on-one tutoring condition worked through the

material with the assistance of an experienced human tutor. The tutors were instructed to

use the textbook and all of the 56 assigned problems, but were not told to use a particular

method of tutoring with the students: instead, they were to rely upon their tutoring ex-

14

Tutoring: Guided learning by doing

pertise. The student and tutor were seated side by side at a table containing the computer

terminal and a tape recorder. The keyboard was placed in front of the student to facilitate

the students^ typing, but the tutors could type, if needed. The tutors were instructed to

require the students to solve,each problem correctly before moving on to the next problem

in the pre-set sequence.

Independent problem solving: In the independent problem solving condition, students

worked through the problems without access to a tutor. The experimenter checked the

solutions after each chapter and told the students which problems, if any. were incorrect.

The experimenter did not convey anything about the errors in the solution, but simply

reported that the solution was incorrect. The students were then required to make the

necessary repairs. Thus, subjects in this condition were also required to solve all 56 assigned

problems correctly. The students were allowed to ask the experimenter questions if they

felt completely confused. In these infrequent cases, the experimenter would offer some

small amount of assistance, such as pointing the student back to the relevant section of the

textbook.

Discourse Analysis Methods

To analyze the discourse between tutors and students, we first transcribed the complete

protocols from all eight student-tutor pairs. Then, we interspersed the records made by the

computer of all LISP interactions into the transcriptions to provide one complete trace of

all verbal behavior and interactions with the computer. This complete trace serves as the

data for this analysis. The goal of this analysis is to uncover the behaviors giving rise to

tutorial effectiveness and the situations in which these behaviors occur by examining the

patterns of student-tutor utterances throughout the problem solving.

15

Tutoring: Guided learning by doing

Before discourse analysis was performed, all transcripts of verbalizations must be divided

into smaller units corresponding to codeable events. Then, each segment was categorized

according to the type of student or tutorial action. This process is known as segmentation

(Bakeman k Gottman. 19861- When dividing a protocol into segments, the segmenter must

make a decision about when one segment ends and another begins. Explicit segmentation

rules are used to ensure reliable segmentation, typically by requiring segmenters to make

few inferences (Bakeman L Gottman. 1986). One way to measure the success of these

rules is to measure percent agreement, capturing the extent to which segmenters divide the

protocol similarly.

In this study, we used a method for breaking the discourse into events we call segmenta-

tion by idea, based upon identifying when a speaker is discussing a new point. All discourse

on any one point by one speaker becomes one segment. Thus, each time a new idea is

entered into the discourse a new segment is created, allowing detailed access to each and

every topic of any speaker's discourse.

Segmentation by idea differs from turn-taking segmentation schemes, a very common

scheme (e.g., Bloom. Rocissano. L Hood. 1976). in that turn-taking schemes typically

attempt to take the whole utterance of a speaker (one turn) as the unit of analysis to be

categorized, whereas segmentation by idea allows a single utterance to be broken up if it

expresses multiple points.

Insert Table 2 about here

For example, consider the protocol shown in Table 2. which is both segmented and

categorized. In this part of the session, the tutor is explaining how LISP matches parameters

in a student's function to actual values when that function is called. Note that the a single

16

Tutoring: Guided learning by doim •"o

tutorial utterance was divided into three categorizable segments (events 9-11 in Table 2)

whereas it would have been classified as a single turn in a turn-taking scheme. Segmentation

by idea allows consideration of the individual problem solving events that occur in a series

within one participant's comments rather than considering them together. Furthermore,

segmentation by idea differs from other methods of segmentation in that a segment can

continue across an utterance of the other person if the speaker fails to acknowledge the

second person's speech in any way. For example, consider event number 5 in Table 2. Here

the tutor does not verbally acknowledge any of the student's comments, and continues

describing the same concept. Thus, this entire interaction was segmented as one event.

This method thus allows each segment to capture a single complete problem solving event.

To ensure the reliability of our scheme, two of the authors independently segmented all

of the protocols, and differences between their segmentations were resolved between them.

Instructions for segmentation are shown in Appendix A. The two segmenters initially agreed

on 98% of segments, calculated across all protocols, indicating that the rules we used could

be implemented very reiiably (Bakeman k. Gottman. 1986) and that there were very few

differences to resolve. This study analyzes approximately 15.000 segments.

After segmenting all protocols, we next assigned each segment to one of 36 categories

that captured each student or tutor action. We developed these categories to represent

the information expressed throughout the problem solving. They allow us to specify the

problem solving contexts that lead to the various tutorial behaviors and to examine the

pedagogical strategies of the tutors. We designed categories to capture tutorial behaviors

highlighted as crucial for pedagogical success in the theories of tutoring presented earlier.

For example, we created categories for tutor confirmatory feedback (Fox. 1991). tutor moti-

17

Tutoring: Guided learning by doing "*0

vational feedback (Lepper et al.. 1990). and tutor goal remindings (McArthur et al.. 1990).

We also designed categories for events viewed as important to learning in general, such as

making assertions, trying solutions, setting goals, offering explanations, and so forth. A

complete list of the categories of student events is presented in Table 3; Table 4 contains

the tutor events. Definitions and examples of each category along with the number of oc-

currences of each are included in Appendix B. Each category was designed so an utterance

could be classified by the explicit meaning of the utterance.

Insert Table 3 about here

Insert Table 4 about here

In general terms, the student categories shown in Table 3 capture actions such as prob-

lem solving actions, asking for tutorial help, indicating understanding of tutor utterances,

checking the current answer, and miscellaneous comments. Similarly, the tutor categories

displayed in Table 4 consist of groups of actions such as when the tutor performs a portion

of the problem solving, offers guidance to the student about ongoing problem solving, offers

confirmatory feedback, gives error feedback, assesses the student's understanding of a topic,

helps the student check the answer, and makes miscellaneous off-task comments.

The coding scheme was designed to be dependent upon the content of the utterance

rather than upon the form of the speech act used. Although the choice of speech act could

affect the way a student responds to an utterance (Graesser et al. 1993: Lepper et al.

1990), we viewed the content of the utterance as most representative of the problem solving

state of the student and tutor. For our analyses of tutorial responses to problem solving

Tutoring: Guided learning by doing

situations, we wanted to focus on the information communicated rather than upon the style

with which it is expressed. This information defines the situations to which the tutors are

responding. Thus, utterances 1 and 2 below are both categorized as Tutor Corrections.

because each conveys the same information, namely that the student needs a quotation

mark in the program.

1. Tutor: No — put a quote there.

2. Tutor: Don't you need a quote there'.7

We categorized each segment into one and only one category, because more power-

ful analyses are possible for mutually exclusive categories (Bakeman k Gottman. 1986).

Table 2 displays the interaction after both segmentation and categorization. Initially in

Table 2. the tutor points the student to an example in the text. This is a Tutor Focus

Attention. The student responds affirmatively to this point, offering a Student Confirma-

tion. Soon thereafter, the tutor works through the solution as the computer would, which

falls into the category TSP, Tutor Simulate Process. After this TSP, the student offers a

confirmation, and the tutor begins a discussion of how LISP treats function parameters.

All protocols were independently categorized by two of the authors. The rules followed

by the two coders are presented in Appendix A. After completing all categorization, we

examined the extent to which the coders categorized events in a similar manner. Cohen s

Kappa (K) (Bakeman & Gottman. 1986: Cohen. 1960) is often used to measure reliability

in categorization. Kappa captures the agreement among multiple coders but adjusts the

resulting value for the amount of agreement between coders that would be expected due

to chance. A value of Kappa greater than 0.70 is considered indicative of a reliable coding

scheme (Bakeman k Gottman. 1986). The categorization in this study was quite reliable.

19

Tutoring: Guided learning by doing

K = 0.81.

Our categorization scheme based upon segmentation by idea does have potential limi-

tations. For example, recall that each utterance is categorized as one event. However, it

seems possible that an utterance could in fact serve several conversational goals. For exam-

ple, an utterance classified as a Tutor Elaboration could also contain a Tutor Confirmation:

"Yes, right, you remembered that LAST returns a list." Since there is no explicit evidence

of a change of topic, these would be segmented together and coded as one utterance, even

though the utterance appears to serve two pedagogical goals simultaneously — to offer a

confirmation and to elaborate upon information present in the solution. In the analysis

presented below, we will take the overlapping goals of different categories into account by

merging certain categories that overlap significantly.

This limitation did not appear to interfere with categorization. The high reliability of

the categorization indicates that it was in fact possible to assign each utterance to a single

category with high reliability. Thus, constraining each utterance to only one category

appears to be a reasonable principle for categorizing these problem solving events.

In addition to identifying each problem solving event, we also identified those actions

that contained an erroneous assertion or solution component. Errors play a critical role in

learning. For example, explaining why an error occurred may help novices avoid the error in

the future and highlight areas of confusion (Chi. Bassok. Lewis. Reimann. Sz Glaser, 1989:

Schänk & Leake. 1989). However, errors can also lead to serious floundering, potentially

interfering with learning (Anderson. Boyle, k. Reiser. 1985: Lewis k. Anderson. 1985; Reiser.

Beekelaar. Tyle. t Merrill. 1991). Tutorial assistance provided for locating and repairing

errors has become a focus of research in both human and computer-based tutoring (e.g..

20

Tutoring: Guided learning by doing

Anderson et al.. 1985: Littman et al.. 1990: McArthur et al.. 1990: Reiser. Kimberg. Lovett.

k. Ranney. 1992). Thus, errors represent particularly critical events around which to focus

our analysis of tutorial strategies and the associated learning outcomes. To achieve this

goal, we located and categorized each and even' error, and then identified the utterance

that indicated an error had occurred, according to the following procedures.

Again, two of the authors independently looked through all the utterances and computer

interactions to locate student errors. Errors included student goals that were not needed

in the problem, required goals that were forgotten, incorrect assertions about functions

or concepts, and syntactic mistakes, as well as slips such as typographical mistakes. In

contrast to the categorization of conversational events, in this analysis we considered the

speech act of the utterance. We did not categorize questions as errors, because questions are

explicit requests for information, rather than situations where a student asserts something

to be true that is false. Thus utterance 3 was marked as an error because the assertion

about append is false, but utterance 4 was not categorized as an error even though the fact

proposed is incorrect.

3. OK, append, append, let's see. that's the one that takes an atom and a list...

4. Is append the one that takes two atoms?

Focusing on non-question mistakes allows us to see precisely what tutors do when students

make a mistake rather than what happens following an explicit request for information. We

were able to identify the errors reliably, K = 0.75. There were 1.242 errors in the problem

solving sessions, or approximately 25 per hour. More errors occurred during the third

chapter, as the material became more difficult, but substantial numbers of errors occurred

during the first and second chapters as well.

21

Tutoring: Guided learning by doing

After identifying the erroneous actions, we categorized each one. This categorization

of errors is designed to determine if tutors respond differently to errors of varying types.

Accordingly, our error categories captured mistakes that have been discussed as central

for learning, such as errors in the syntax of solutions (Anderson et al. 1985: Reiser et al..

1991). confusions about the semantics of basic operators (Anderson. 1989: Reiser et al..

1992), problems with goal structures (McArthur et al.. 1990: Singley 1990: Soloway. 1986;

VanLehn. 1990), and other errors that one would expect to occur in such a task, such as

typographical errors. We originally designed nine error categories, including four slightly

differing variants of one error group called semantic errors. In fact, we found occurrences

of only two of these four variants among the student errors, so we discarded the two empty

categories. We also initially considered dead code, a situation in which extra functions

are left in a solution but do not affect it in any way, as potential errors. However, the

tutors never responded to these situations, and the students' solutions actually produced

the correct result, so we did not consider these 18 cases in our analyses of student errors.

The remaining six error categories shown in Table 5 included 1.224 errors. Once again, two

authors independently categorized the errors. The categorization was reliable, K = ./0.

Insert Table 5 about here

Finally, after locating the errors, we looked to see which participant indicated that an

error had occurred and how the indication was performed. For example, the student might

make an error and then notice it and begin a repair. In example 5. the student makes a

syntactic error in the else clause of a conditional by putting two parentheses instead of just

one before the t and then flags the error herself.

?2

Tutoring: Guided learning bv doing
•"Ö

5. Student: [typing]

(defun classify (arg)

(cond ((numberp arg) 'number)

((null arg) 'nil) <

((t

Student: Whoops. I don't need that many.

Tutor: Right, exactly. You caught yourself.

Alternatively, the tutor might comment on the error, as in example 6. which occurred earlier

in the same problem.

6. Student: [typing]

(defun classify (arg)

(cond ((numberp arg) number

Tutor: Now actually, urn. for number, you want the actual word.

Student: So I have to put this [a quotation mark].

Tutor: Yes. you have to put a quote.

Student: [typing]

... 'number)

The student's self-initiated correction in example 5 and the tutor's comment in exam-

ple 6 indicated that an error had occurred. We call such utterances error flags. We classified

an utterance as an error flag if it indicated that a problem solving event was incorrect. Error

flags ranged from very specific, as in example 6. to very general, such as the tutor saying

23

Tutoring: Guided learning by doing

"Look back up there — there might be a problem." General utterances alerted the student

that one of the recent steps contained an error, but did not tell which step was wrong.

We did not restrict the categories of utterances that could serve as error flags. Of course,

given the nature of some of ^he category definitions, certain categories, like Tutor Confirm

Step, were not used to indicate that an error had occurred. Thus, although all categories

could serve as possible flags, only a subset were actually used as error flags. Assist Plan

Assertion was the most common error flag from the student. Tutor Error Feedback was the

most common tutor error flag, followed by Tutor Prompt. Two of the authors marked the

flag for each of the 1224 errors reliably, K = .75.

Errors did not always result in an incorrect solution attempt. In some cases, students

made an error in a step but immediately located it and began the repair within the same

event, as in example 7.

7. Student: [typing] (my-or a 'a

This student did not put a required quotation mark before the constant a, but immediately

repaired the error without assistance. We marked this as an error with an immediate flag

by the student. Even though the student needed no help in this case, she experienced an

impasse that had to be overcome. To account for all impasses and their repairs, we included

these cases in the analyses as well. Furthermore, in some of these cases in which the student

repaired his or her own error, there is no explicit utterance that marks the error. Instead,

the self-correction behavior is considered both to flag and to repair the error.

In many cases, the error flag only initiated the error repair process, which could require

several events to complete. To determine how many events were required to repair errors,

two of the authors independently located the event that achieved the repair for each error.

24

Tutoring: Guided learning bv doing o

The repair might occur with the same event, as in example 7. or might occur a few events

later. Finding the repair location, given the location of the error itself, is very reliable.

K = 0.90.

Having described the categorization of each and every utterance, the finding of all errors,

the identification of the utterance that begins the error recovery process, and the location

of the end of each error episode, we next turn to the analyses of these data.

Results and Discussion

Before describing the tutors' methods of assisting the students during the learning

sessions, we must demonstrate that the tutors were in fact effective. To do so. we analyzed

the students' posttests and the duration of the learning sessions. Recall that all students,

regardless of condition, worked on all the problems until they were all correctly solved. The

tutored students completed the material in just over half the time that the non-tutored

students required, 300 mins versus 550 mins. F(l,13) = 24.5.p < .01. There were no

differences between the groups' performance on the posttest. Students in the one-on-one

tutoring condition received 97% of the points possible, and the independent problem solving

students scored 95% on average. This lack of posttest differences does not indicate a lack of

pedagogical effectiveness for tutors, because one would expect that solving all the problems

correctly should lead to significant domain mastery (Anderson k, Corbett. 1993: Newell.

1990). Thus, it is not surprising that both groups were able to achieve the same degree

of understanding of LISP. The important difference is the time it took to do so — the

tutored students achieved equivalent domain mastery, in spite of spending substantially

less time on task than the independent problem solving students. Thus, the tutors did

provide clear cognitive benefits, and so we next examine the protocol data to specify the

25

Tutoring: Guided learning by doing

actions performed by the tutors and the situations in which they occurred.

In this section, we present our analyses of the approximately 15.000 student-tutor in-

teractions over the 50 hours of sessions to describe the ways tutors assist students in devel-

oping domain mastery. We present a model to show why the assistance should be helpful.

Tables 1 - 2 demonstrated the complexity of the student-tutor interactions, including con-

firmations, corrections, goals, and much else. Our fine-grained identification of all student

actions and tutorial responses in extended problem solving sessions allows us to investigate

how tutors support and guide students' problem solving.

Domain mastery typically begins by studying expository text and annotated examples

(Chi et al.. 1989; Faries. 1991: Gentner. 1983; Gick k Holyoak. 1980; Pirolli. 1991: VanLehn.

Jones, k Chi. 1992). Elaboration of declarative material via questioning, predicting, and

explaining can facilitate solving problems later (Chi et al., 1989: Graesser, 1992). Another

critical location of learning is the attempted application of the declarative knowledge gained

from the text and examples to solve new problems (Anderson. 1983. 1987; Trafton k Reiser.

1993a). We are concerned with the overall development of domain expertise in these learning

sessions rather than the differential roles of solving problems and understanding expository

materials. Thus, we consider student events occurring either while reading or working

on assigned exercises as problem solving actions, and focus on the role of these events in

learning.

Protocol analyses typically make use of new categories combined out of the originally

coded events (Bakeman k Gottman. 1986). Often the original categories are coded at

an extremely fine grain, and then clusters of events taken together represent functional

groups. For example, several of the original student events taken together describe the

Tutoring: Guided learning by doing

process of problem solving, upon which we focus. These student events capture different

actions that could take place during problem solving. In our study, these problem solving

actions included assertions and elaborations made while reading the text, generating or

studying a concrete example^ setting goals, or creating new LISP expressions. All of these

are categories in our coding scheme. However, the fine distinctions between them are not

relevant for understanding how the tutors assist overall problem solving, including encoding

the text and examples. Thus, we combined these categories into a new category called

Student Problem Solving Action (SPSA). which will be used throughout the next analyses.

In addition, we created another higher level category. Tutor Confirm Step (TCS). Recall

that earlier, we pointed out the segmentation by idea often led to Tutor Elaborations includ-

ing explicit confirmations. Since all segmentation was performed before categorizing any

utterance, we could not go back and break the confirmatory portion out of the elaborative

portion of a Tutor Elaboration that contained an confirmation. Thus, we decided to include

Tutor Elaborations containing explicit confirmations in TCS. Furthermore, elaborating on

a student assertion usually implies an implicit confirmation, since the new information is

added to the tacitly agreed to student action. Therefore, we defined the category Tutor

Confirm Step to include utterances originally categorized as Tutor Confirmations as well

as utterances originally coded as Tutor Elaborations. To focus on the role of confirmatory

feedback in problem solving, we joined these two categories together into the new Tutor

Confirm Step.

Insert Figure 1 about here

Figure 1 shows the events in the tutoring sessions, displaying the results of our catego-

rization of the data. Each object in Figure 1 is a type of event. The half circles are tutor

27

Tutoring: Guided learning by doing

events such as Tutor Confirm Step, in which the tutor offered confirmatory feedback to the

student. The squares within circles are student events, such as Student Problem Solving

Action, the category that captured the actions while students solved problems and tried to

interpret the text. The frequency of each event is listed in Appendix B.

The most important source of information in Figure 1 is the arrows. These arrows

show that some event type followed some other event type. To construct the figure, we

examined the frequency with which each event type followed all other types of events. We

then examined this transition analysis (Bakeman L Gottman. 1986: Fisher. 1991) for the

most common chronological sequences, enabling us to specify precisely what sorts of events

occurred and their relationships during the sessions. The arrows represent all the transitions

between one event and another that occurred more often than 10 times in the protocols.

The wide arrows are the most frequent transitions in the data, those that occurred more

than 100 times. For example. Tutor Confirm Step often followed Student Problem Solving

Actions. For completeness, the entire transition matrix is shown in Appendix C.

In addition to the combined categories SPSA and TCS. Figure 1 contains a category

called Tutor Error Feedback. As described earlier, the manners in which tutors respond to

errors can be crucial for learning. For the initial picture of the tutoring sessions shown in

Figure 1. we merged three categories of explicit error feedback, Tutor Correction. Tutor

Surface Feature Feedback, and Tutor Plan-Based Feedback, into Tutor Error Feedback. The

categories comprising Tutor Error Feedback contain only tutorial utterances that provide

direct and explicit guidance after errors, but these events do not exhaust all possible tutorial

responses to student errors. Any utterance could in principle be used in response to an

error. We will address how tutors respond to errors in the next analysis.

28

Tutoring: Guided learning by doing

Since we believe that most of learning occurs during the sort of problem solving actions

captured in Student Problem Solving Action (Anderson. 1983: Laird et al.. 1986: VanLehn.

1988). we will focus on Student Problem Solving Action for the remainder of this paper.

Specifically, we shall next present two sorts of analyses of tutorial assistance. First, we will

discuss the means by which tutors help keep the students' problem solving on productive

paths via confirmatory feedback, error feedback, and other guidance. We then turn to a

finer examination of errors to uncover the ways tutors offer feedback, to see if tutors in fact

respond differently depending upon the nature of the student's error, and to examine how

the student and tutor work together to repair errors.

How tutors keep problem solving productive

In this section, we examine the strategies tutors use to provide guidance to students

while they are in the process of understanding and solving problems, that is. engaged in

Student Problem Solving Actions. This section focuses on the ways tutors help keep student

problem solving productive and continuing. We look initially at correct problem solving

actions to see how tutors respond and then turn to responses following impasses and errors.

Confirmatory Feedback

How do tutors respond when students make correct problem solving actions? Fox (1991)

argued that tutors offer confirmatory feedback after correct steps. Our category Tutor

Confirm Step captured this sort of tutorial feedback. There were 3.506 Student Problem

Solving Actions in our data. Of these. 1.495 (44%) were followed immediately by a Tutor

Confirm Step. This information is represented by the wide arrow from Student Problem

Solving Action to Tutor Confirm Step in Figure 1. The remaining 56% of transitions

29

Tutoring: Guided learning by doing

from Student Problem Solving Action were primarily made up of occurrences of one SPSA

following another and Tutor Guidance utterances following an SPSA.

Notice that the 44% was calculated using all Student Problem Solving Actions, includ-

ing erroneous steps. When considering only the 2.261 correct problem solving actions, the

picture becomes even more striking — 66% of correct Student Problem Solving Actions

received confirmatory feedback. Almost no incorrect steps received confirmatory feedback.

This indicates that tutors are commonly confirming correct actions, but carefully not of-

fering confirmatory feedback after erroneous actions.

These problem solving steps are not by and large complete solutions. This high propor-

tion of confirmations does not reflect situations in which the student has created an entire

solution to which the tutor responds. "Yes." Most solutions required multiple problem solv-

ing actions, even when no errors occurred. In fact, problems that require definitions of new

LISP functions, as in the second and third chapters, required an average of 10 correct

events to complete, even with no erroneous events. These problems received an average

of six Tutor Confirm Steps per problem as well. Thus, tutors offered confirmations very

often — 66% of correct events — and these confirmations occurred during ongoing problem

solving, rather than at its successful completion.

To further emphasize that students received these confirmations during problem solv-

ing, note that 43% of Tutor Confirm Steps were followed immediately by another Student

Problem Solving Action. Table 6 gives an example of the use of Tutor Confirm Steps during

attempts to solve a problem called first-eiem. The student initially set up the first part of

the expression to be typed, and the tutor responded with a confirmation (TCS). The tutor

offers further confirmations as problem solving continues through the problem.

30

Tutoring: Guided learning bv doing

Insert Table 6 about here

It might be suggested that these confirmations are in fact simply conversational require-

ments, since people are expected to respond to others' statements (Grice. 1975). If this

were the case, tutors would have confirmed all steps. However, tutors did not confirm all

steps, but in fact only offered confirmations to correct steps and responded to errors with

other types of tutorial actions. Thus, tutor confirmatory feedback is indeed informative,

and tells the student that the previous action fell onto a profitable solution path.

Tutors could also encourage students to continue on the current, productive solution

path via Tutor Guidance. A tutor response such as. "So next we need the else case"

includes an implicit confirmation of the previous step. In other words, the tutor is basically

saying ;'OK so far, now the else case is next.*' Tutor Guidance could include utterances that

are motivational in nature, such as "Yeah, you're doing just fine." which also encourage

the student to continue along the correct path. Tutor Guidance events make up another

16% of events subsequent to the 3.506 SPSAs. and make up an additional 70% of events

following the correct SPSAs. Thus. Tutor Guidance utterances that contain an implicit

confirmation are another important manner in which tutors keep problem solving productive

by encouraging students to continue on a productive solution path.

These results support the claims of Fox (1991). They show that tutors do in fact offer

confirmatory feedback throughout the problem solving process. Correct events usually re-

ceive confirmations immediately, and incorrect events do not receive confirmatory feedback.

This type of encouragement when students are on a promising solution path appears to be

one method by which tutors help guide students" problem solving. We next turn to the

31

Tutoring: Guided learning by doing

tutorial responses that followed errors.

Responses to incorrect problem solving steps

Not all solution steps are correct. Errors offer a particularly crucial opportunity for

learning. Some researchers have argued that recovering from errors carries great potential

dangers (Anderson. 1983: Lewis k Anderson. 1985: Sweller. 1988). while others have argued

that recovering from and explaining impasses is the key to effective learning (Chi et al..

1989: Laird et al.. 1986: Schänk k Leake. 1989: VanLehn. 1990). First we consider how

errors are uncovered in the problem solving sessions. How do tutors help students recover

from errors? Do tutors allow students to locate and repair their own errors, a strategy

emphasized by some learning researchers (Papert. 1980: Schänk & Leake, 1989). or do

tutors find the errors for the students?

Errors were not left unnoticed for very long. In fact. 75% of all errors in the sessions

were indicated within two events. Typically, an error occurred, the student or tutor made

one other utterance, and then the error was flagged. Recall that an error flag is the initial

indication in the discourse that an error has occurred, and the flag could be any of the

different types of events we coded, such as a Tutor Focus Attention: ;'Umm. look back up

there — there might be a problem." Thus, these problem solving sessions are not typified by

long exploratory searches, during which errors may occur and not be noticed immediately,

a pedagogical approach sometimes advocated (e.g.. Papert. 1980). Table 7 shows a typical

example of a student flagging her own error, and Table 8 shows a tutor flagging a student

error.

Insert Table 7 about here

32

Tutoring: Guided learning bv doing

Insert Table 8 about here

Since error repair was begun very rapidly, we next turn to the question of who noticed

the errors. Fox (1991) and L'epper et al. (1990) argued that the student plays a major role

in locating and repairing errors. In fact, of the 1.224 errors identified for analysis, almost

half (47%) were noticed by the student. What sorts of errors did the students catch?

Interestingly, most of the errors caught by the students (91%) were typographical errors or

syntactically incorrect LISP expressions. Although there may be pedagogical advantages

for students to find and repair many different sorts of errors, including errors involving

problem goals, for example, students generally did not do so. Either they simply could not

find these errors or our tutors did not allow them the leeway to do so. Next we consider

how tutors responded to student errors.

Tutors flagged approximately 53% of all errors. Of the errors flagged by the tutor, only

41% were typographical or syntactic errors. The remaining 59% were errors relating to

goals and to the meanings of LISP operators. Thus, tutors mainly caught the more difficult

errors, whereas students mainly caught the low-level errors.

Insert Figure 2 about here

Figure 2 shows the number of errors flagged by the student and the tutor as a function

of the number of events intervening between the error and the repair. Most student-flagged

errors were caught very quickly — often on the same event, with a lag of zero — while

many of the tutor-flagged events were more removed from the impasse. Most, but not all.

of the tutor flags occurred very quickly after the error, usually on the next event. Thus.

33

Tutoring: Guided learning by doing

tutors flagged most of the more serious errors related to goals and to the meanings of LISP

operators, and generally did not allow students to find and repair their own errors, since

the tutors commented on most errors immediately after the error occurred if the student

did not notice it.

Analysis of the events following the error flags suggest that the tutors' error flags were

used during the students' ongoing problem solving. Sixty-three percent of tutor error flags

were followed immediately by another Student Problem Solving Action, thereby indicating

that students received the assistance and began implementing a repair. Almost all the

remaining tutor error flags were followed by Student Confirmations. Although some have

suggested that students have great difficulty understanding error feedback given by instruc-

tors (Graesser et al., 1993: Moore & Swartout. 1989). the students in this study seemed to

understand the error flags quite well, since most tutor error flags were not followed by re-

quests for clarification and elaboration. Thus, error flags, like confirmations, are important

to the ongoing problem solving process.

These analyses have suggested that tutors did not allow students a great deal of time to

discover their errors - if the student did not comment on an error essentially immediately

after it happened, the tutor did. Despite the potential benefits of students finding and

repairing their own errors, students actually found mostly syntactic low-level errors. Repair

of the more complex errors was at least initiated by the tutors. In subsequent analyses in

the next section, we consider the type of guidance tutors provided on errors and how the

error recovery episode progressed.

34

Tutoring: Guided learning by doing

Summary of tutorial guidance

In this section, we considered how tutors offer interactive support for student problem

solving. We showed that tutors offer rapid confirmations and supportive guidance to cor-

rect student actions, even small actions like interpreting a short text section or creating

individual components of a solution. These confirmations are more than the conversational

politeness of acknowledging the other speaker, since the tutors offered confirmations only

to correct steps. In contrast, incorrect steps were flagged very rapidly. Students caught

almost half of the errors, but the errors they noticed were primarily low level errors such

as typing mistakes or syntactic problems. The remainder of the errors were caught by the

tutor, usually within one or two events. Thus, tutors are very much involved in the ongo-

ing problem solving, since most student steps received some sort of tutorial response that

helped guide problem solving, either a confirmation or notification of an error.

These analyses support a view of tutoring as guided learning by doing. When a student

solves problems alone, it is usually difficult to determine whether a step was correct or

not, and the student may not be sure it was. However, when a tutored student makes

a correct step, the tutor intervenes to say it was correct, thus helping problem solving

continue. Also, when a student working alone makes an error, it may not be noticed for

some time, making repair difficult and floundering likely. Tutors ensured that any errors

were noticed very quickly, jumping in to tell the student the step was incorrect, if needed.

These confirmations and error flags serve to guide the ongoing problem solving and keep it

productive.

Having focused on the ways tutors help keep ongoing problem solving productive, we

next turn to a more precise examination of the errors made during the learning sessions.

35

Tutoring: Guided learning by doing

focusing on the type of assistance tutors provided when they offered feedback. We will

describe the ways tutors and students worked together to repair errors, paying particular

attention to the ways the tutors and students dealt with different types of errors.

fcrrors and the content of feedback

There has been a great deal of focus on the manner in which tutors scaffold students'

recovery from errors and impasses. For example, Fox (1991) and Lepper et al. (1990)

argued that tutors attempt to indicate errors to the student subtly, so that the student can

perform the repair, while Littman et al. (1990) argued that tutors offer quite explicit error

feedback. The content and style of error feedback can have significant effects on learning

and motivation (Lepper et al, 1990; McKendree, 1990; Reiser, Copen, Ranney, Hamid, &

Kimberg, 1994), and thus, understanding how tutors respond to student errors can cast

further light on how tutors guide their students.

Recovering from an impasse or error entails several components (Merrill et al., 1992).

The first stage of recovering from an impasse is realizing that an error has occurred. Then,

the erroneous features of the solution must be located, and the erroneous portion must be

replaced with a successful fulfillment of the goal. Finally, it may even be helpful, though

not necessary, to understand why the error occurred. These components are fundamentally

distinct, even though they usually occur as a group. A student might perform all of the

components, thereby completing all of the error recovery. At the other extreme, a tutor

might tell a student exactly what went wrong and how to repair it. The error recovery

process could also be a collaborative enterprise, with the tutor scaffolding the recovery as

needed to get problem solving back on track, but allowing the student to perform much

of the work. If the tutor's main goal is to get the problem solving back on track, we

36

Tutoring: Guided learning by doing

would expect feedback to perform most of the error recovery components for the students.

Alternatively, if errors are used as opportunities for learning, tutors might allow students

to perform most, if not all. of this process.

In this section, we investigate whether there are any regularities in tutorial responses

to errors. We first define the types of errors students committed, and then present the

different types of error feedback tutors used to initiate error recovery in our categorization

scheme. Next, we examine the relationship between tutor error initiations and error type.

In the final part of this section, we discuss how students and tutors collaborated to repair

errors.

Before describing tutorial responses to errors, we first describe the types of errors in

detail. Recall that two independent coders identified all errors in the verbalizations and

typing (see Table 5). Some of these errors represent difficulties in planning a solution, others

involve incorrect assertions about functions and concepts in LISP, and still others reflect

difficulties in implementing a correct solution. These three categories of errors capture

a continuum of behavior ranging from planning difficulties to problems implementing a

solution. This will allow us to see whether tutors respond differently to errors where the

repairs have differing severity. The present analysis excludes the 360 typographical errors

which were typically slips and self-corrected by the student. We focus on the remaining

categories of errors. These five categories form three groups that we will use as the basis

for this analysis: syntactic errors, semantic errors, and goal errors.

The first category, syntactic errors are difficulties in communicating an expression to the

LISP interpreter correctly so that the expression can be understood. This category covers

cases where the programming constructs and algorithms used would achieve the stated

37

Tutoring: Guided learning by doing

goal, but the student implemented a construct incorrectly in the language. These errors

consisted only of the addition of extra parentheses, the deletion of needed parentheses, or

the addition or deletion of quotation marks.

The second class of errors semantic errors, are inappropriate uses of LISP constructs.

and includes error types Semantic: Operator and Semantic: Concept shown in Table 5.

These covered expressions that were syntactically correct, but made use of inappropriate

constructs. One way of misapplying a construct is to apply a function when the precondi-

tions of the function are not met. An example of a precondition failure occurred when a

student typed (cons a ~b) to construct a list: in this curriculum, cons requires a list as its

second argument, but the student used an atom. To consider another example, the student

might claim incorrect output of a function that could be applied to the data. For example,

one student said "(member !b '(a b c d)) returns (bf\ when in fact it would return the list

(b c d). Thus, although member can be applied in this situation, the student did not apply

it correctly. These semantic errors consist of more than simply a failure in communicating

a solution to the computer, they are erroneous choices or applications of that which must

be communicated — operators in the domain.

The third category of errors. Goal Errors, consists of errors concerning setting or ful-

filling goals. These errors included categories Goal: Incorrect and Goal: Skipped Goal in

Table 5. In these cases, a solution was syntactically correct and used the correct function

for a goal, but the goal under consideration was in some way incorrect. When reading

the problem, the student must try to set up an initial goal structure to begin solving the

problem. The student might have difficulty or make mistakes doing this, as reflected by

the student who said "... so I just return the [first] variable." when the correct subgoal was

38

Tutoring: Guided learning by doing

to return a list of the first and second variables. In other cases, students were solving the

problem, choosing and achieving subgoals. and failed to implement a subgoal that had been

previously set. In these cases, students were able to set up a goal structure, but then failed

to achieve a goal that had been present in the structure at the start. These errors concern

an even more critical component of problem solving than Semantic Errors. They involve

planning a solution apart from its implementation.

Having presented the three classes of student errors, we can now consider how tutors

responded to each type. First, we consider the events used to initiate error recovery. Fol-

lowing that analysis, we investigate how the type of feedback was related to the type of

error. Recall that Figure 1 included a category called Tutor Error Feedback. This category

is made up of three categories. Tutor Correction, Tutor Surface Feature Feedback, and Tu-

tor Plan Based Feedback. These differ in the portions of the error recovery process initially

performed by the tutor. When tutors intervene, they must determine how much of the error

recovery process they will perform. Analyzing the occurrence of tutorial error feedback will

cast light on how tutorial feedback is tailored to student errors. First we review the three

categories of tutorial feedback.

We defined error feedback as utterances that contained a reference to incorrect features

of the student's solution. The feedback might also contain information about how to repair

the error. Although there was usually only one error feedback per error, our coding scheme

allowed for multiple feedback per error. Thus, our definition of error feedback is very similar

to our definition of error flag, except that a flag might not point to any particular feature of

the solution, while an instance of error feedback must point to a feature. Tutors used one

of the error feedback categories to flag errors in 95% of cases. However, because here we

39

Tutoring: Guided learning by doing

are concerned with the information conveyed by the tutor in response to a student error, in

this analysis we examine the tutorial error feedback instead of error flags. As will be seen

below, tutors could indicate features at differing levels of abstraction and with differing

amounts of information about the repair.

We categorized feedback as Tutor Correction if the tutor responded to a student error

by telling the student what the correct action should have been and how to repair the

error. Thus, this category captures tutorial utterances that perform all of the components

of the error recovery. A Tutor Correction might contain an explanation of why the step was

incorrect, or it might simply be a directive. For example, one tutor said "You want to quote

that, since it'll be a function call otherwise1' after the student typed (listp (a b c d)). This

tells the student that a quotation mark before the (abed) has been forgotten, and why

that matters. In a different situation, a tutor said "You'll need to use and there, instead

of or." The utterances differ with respect to how much explanation is given along with

the correction, but both are Tutor Corrections, since each tells the student exactly how to

repair the impasse.

We also had two categories for error feedback that initially provided fewer of the error

recovery components. An utterance was considered Tutor Surface Feature Feedback if it

only pointed out an erroneous feature explicitly present in the student's solution. For

example, instead of offering a Tutor Correction to the listp example above, the tutor could

have offered a Tutor Surface Feature Feedback by saying "An unquoted list is a function

call." This type of feedback points out to the student where the problem is, and often

includes information about which component is incorrect, but does not directly suggest a

repair. The repair may be easily inferable from the feedback, as in the last example in

40

Tutoring: Guided learning by doing .

which the repair is to add a quotation mark, but an inference is required, nonetheless. For

example, the students read in the textbook that cons took two arguments, an atom as the

first argument and a list as the second. When a student began typing an expression designed

to rotate the last element of a list to the front using the function cons, and typed (cons

(lost Us), the tutor intervened to say -'Last returns a list, not an atom." The student had to

infer what the tutor meant by the feedback. This feedback could indicate that either last

or cons was the wrong function to use. or that the student had forgotten some additional

function that needed to be used, or even that the last should have been the second argument

to cons instead of the first. All of these inferences are the potential intent of the tutorial

feedback. The feedback itself serves to make the student aware of the general location of an

error. The student must infer the nature of the error from the feedback, set a goal for the

repair, and begin replacing the errant portion of the solution. Thus, students have more

opportunity to participate in the error repair after a Tutor Surface Feature Feedback than

after a Tutor Correction.

Finally, the tutor may leave even more of the error repair to the student. The category

Tutor Plan-Based Feedback simply restated the goal the student should have been pursu-

ing. For example, a tutor said "The function should return found if the item is in the list'

after a student coded a function that returned t in that case. This tells the student that,

although the programming constructs employed may be used appropriately, a goal embod-

ied by that portion of the program is incorrect. Once again, even though the inference

required to determine which is the incorrect goal may be fairly straightforward, the student

is still required to make an inference. Furthermore, an utterance such as "You want to

see if both arguments are lists, not if either one is a list" in response to the student code

41

Tutoring: Guided learning by doing Ao

(or for flistp argl) (listp arg2))) is not as clear. In fact, this student needed to replace the

second or with an and. However, the student might sensibly infer that the correct action

was to have only one or. for example, and therefore erroneously to delete the first or. This

type of feedback requires th^e student first to localize the difference between the goal the

tutor says and the goal the student was pursuing, and then replace the erroneous portion of

the solution. Thus, the student has even more opportunity in this situation to participate

in the error recovery process than in the two previous feedback types.

Insert Figure 3 about here

For this analysis we considered only those 575 errors (95% of the tutor-caught errors)

that received one of these types of explicit tutorial error feedback, excluding the 42 typo-

graphical errors caught by the tutor and the 33 errors that did not receive one of the three

forms of explicit error feedback. We then examined the frequency that each type of student

error elicited from each of the three types of tutorial response. This analysis, shown in

Figure 3, reveals a strong relationship between the nature of the student's error and the

type of feedback provided by the tutor, x2 > 150, p < .001. The tutors exhibited a strong

tendency to intervene with a different guidance strategy depending upon the nature of the

error.

When the error consisted only of a low-level syntactic detail, the tutors prevented the

students from floundering by suggesting exactly how to repair the error. Table 9 presents a

typical example of this type of student error and tutorial response episode. In this example,

line 2. the tutor told the student to insert a quotation mark the student had omitted.

Insert Table 9 about here

42

Tutoring: Guided learning by doing

In contrast to syntactic errors, most semantic errors received Surface Feature Feedback.

In these cases, the tutor pointed out the erroneous feature of the solution to the student

rather than suggesting an explicit repair. Table 10 presents a typical example of a tutor

focusing on a feature of the student's solution in this manner. Here, in line 6, the tu-

tor described the correct behavior of append, indicating it should not be applied in this

situation.

Insert Table 10 about here

The third type of student error, goal errors, also received Tutor Corrections and Tutor

Surface Feature Feedback. But this type of error also received a substantial amount of Plan-

Based Feedback, which did not often occur in response to the other error types. Table 11

presents a typical example in which the tutor comments on the students goals. Here, the

student used an incorrect order of conditional cases in the solution, and the tutor reminded

the student of the importance of case order (on line 2).

Insert Table 11 about here

These results suggest an interesting relationship between the type of error and the tu-

tor's initial response to the error. In those cases when the error occurred while trying to

communicate a solution to the computer, the tutors did virtually all of the error recovery

process. However, if the error concerned the selection of an operator in the domain, the tu-

tors pointed out the erroneous feature to the student and allowed the student to participate

in the remainder of the error recovery. If the error was at an even higher level, constructing

and maintaining the problem's goal structure, the tutor assisted with the subgoal selection

by offering a Tutor Plan-Based Feedback, thus providing the student the opportunity to

43

Tutoring: Guided learning by doing 1o

identify the errors, plan the recovery, and execute it. In these cases, the tutor performed

little of the recovery process, allowing the student to do most of the recovery.

These results suggest very clearly that the effectiveness of tutorial feedback may arise

because of the contingency o^feedback style and content on the nature of the student's error.

However, one alternative possibility to be considered is whether the categories of tutorial

response were defined so that each was logically possible only on a subset of error types.

For example, perhaps tutors could only offer Tutor Corrections in response to syntactic

errors.

In fact, however, tutors did offer all types of feedback to all types of errors, albeit

with differing frequencies. To further illustrate this point. Table 12 contains examples of

tutorial feedback demonstrating a plausible tutorial response of each type to each type

of student error. These examples are taken directly from our protocols, slightly modified

so that each example refers to the same error, making it easier to compare the different

feedback examples. The original feedback was of the type presented in the table (e.g., Plan-

Based Feedback), and did refer to the same type of error (e.g., syntactic error), however.

Notice that tutors were able to offer Plan-Based Feedback, even to a syntactic error (lc).

This feedback refers to the goal the student should have been working on, thus allowing

the student to identify and correct the error, but refers to the syntactic error of adding

an undesired quotation mark before the variable lis. Thus, our three tutorial feedback

categories are not biased in their definitions to restrict the feedback to particular error

types. Instead, the pattern in the data appears to represent a real aspect of individualized

instruction. In the next section, we detail the student involvement in the error recovery

process, and highlight the differing outcomes of each type of tutorial feedback.

44

Tutoring: Guided learning by doing

Insert Table 12 about here

What did students do in the error recovery?

We have focused so far on the role of tutorial guidance, but we have not yet considered

the role that students play in the error repair. One possible scenario, given the active

nature of the tutor's guidance, is- that students play an active role when solving problems

but switch into a subsidiary role when errors occur, following the tutor's directions, perhaps

asking questions to clarify advice (cf.. Moore k. Swartout, 1989). but not playing an active

role in the recovery. In this section, we examine the role of students in the error recovery

process.

Insert Figure 4 about here

In our analysis of tutorial feedback, we suggested that feedback varied in the portion of

the error recovery process left to perform after the feedback. To confirm this, we analyzed

the median number of events required to repair an error after it occurred. If there more of

the error recovery process remains after a Tutor Plan-Based Feedback than after a Tutor

Correction, more events should be required to achieve the subgoal correctly after a Tutor

Plan-Based Feedback. Indeed, as shown in Figure 4, it took more events to repair a goal

error, requiring a median of four additional events, than a semantic error, which required

three events. Syntactic errors exhibited the shortest repairs, requiring a median of two

events after the error occurred. These longer durations of repair episodes suggest increased

difficulty forming a repair, consistent with our finding that more of the error recovery

process was left to perform.

Tutoring: Guided learning by doing

Analysis of the events that occurred during these error episodes reveals a collaborative

repair process. Although errors were typically repaired very quickly, sometimes after as

little as one event, the repair process did not typically consist of the tutor leading a passive

student back on to a productive solution path. Instead, students attempting to repair an

error proposed actions to take, and then the tutor and student worked together to get the

solution back on track.

Insert Figure 5 about here

Figure 5 displays the common sequences of events following an error, those occurring

more than 50 times in all protocols. The student error is in the upper left corner of the

figure, and the next event was usually one of the types of tutor error feedback. Infrequently.

there were a few student actions intervening between the error and the feedback. These

are represented by the Other Student Problem Solving Actions box in the upper right

hand corner, with the dotted links representing infrequent events. The collaborative repair

typically began with the Tutor Error Feedback. A Student Problem Solving Action usually

followed the feedback, presumably implementing a partial repair. The tutor often gave

confirmatory feedback to the SPSA. to which the student offered a confirmation also, and

the tutor offered guidance, perhaps in the form of a new goal to be achieved, that the student

attempted to implement with another SPSA. This is a clear collaborative enterprise, with

the student actively working to overcome the impasse, and the tutor offering guidance and

confirmations.

Insert Table 13 about here

46

Tutoring: Guided learning by doing

There is another path through the error recovery process illustrated in Figure 5. This

one, reminiscent of the emphasis of Moore and Swartout (1989) upon student difficulties

understanding tutorial feedback, consists of an error, subsequent feedback, an SPSA, some

tutorial guidance, a student confirmation, and then additional error feedback. The interest-

ing part of this path is that error feedback follows a student confirmation. This has to do

with the nature of our coding scheme. For example, in one case, the tutor said "You need

the null case first." which would be an example of Tutor Error Feedback. If the student did

not understand this, the confirmation would be slightly delayed relative to the comment

such as a one-second pause before saying "Urnm. OK." People in conversation are very

aware of even very short delays (cf., Fox. 1991), so a tutor might interpret this delay as

indicative of student confusion, and thus offer more feedback to enable the student to repair

the error, such as by saying "Since nil is also a list, you need to test for null before using

the listp test."

These analyses have shown that students do in fact contribute to error recovery, even

though tutors often initiate the process. Students and tutors together develop and imple-

ment a solution plan, and each may offer suggestions while the plan is being implemented.

Generality of the Results

In the methodology of this study, we have chosen to emphasize the depth and length of

interaction between relatively few tutors and several students rather than a more shallow

analysis of more student-tutor pairs. This depth of interaction has allowed us to observe

tutorial responses to a wide variety of situations.

Yet. these interactions have taken place in one particular tutorial setting. These stu-

dents were very bright and highly motivated to learn the material, and had not previously

47

Tutoring: Guided learning by doing

experienced difficulty with the domain, as would be the case in a remedial tutoring session.

The domain involves acquiring proficiency by solving many exercises, like other mathemat-

ical and science domains, although the cognitive complexities of the domains vary. In the

programming domain, difficulties often arise as students attempt to express their intentions

in a formal notation (Merrill k Reiser. 1993). Tutorial behavior is almost certainly affected

by a variety of dimensions, including the features of the student and the domain, and thus

the generality of any individual study must be examined carefully. We shall argue, how-

ever, that our results do capture general aspects of tutorial behavior applicable to a wider

range of domains than simply computer programming. We argue this in two ways, first, by

showing how similar the two tutors were to each other and then by pointing out similarities

between our tutors and those described in the literature.

First, the two tutors were very similar to each other. For example, recall that we argued

that tutors frequently responded to a correct student action with a Tutor Confirm Step or

Tutor Guidance. The tutorial response to a correct student action is one indicator of tutorial

style, since different styles will lead tutors to respond to student actions differentially. If

these tutors display differing styles, then the number of cases where the tutors offered Tutor

Guidance versus those where Tutor Confirm Steps were offered will vary. The female tutor

offered Tutor Guidance about 14% as often as Tutor Confirm Steps. The male tutor offered

Tutor Guidance in 13% of these cases. This suggests that the tutors are in fact behaving

similarly. One can calculate a more general statistic to capture the degree to which the

tutors produced similar responses to similar situations by comparing the interaction tables

(Castellan. 1979). This technique essentially counts the situations in which each tutor gave

the same category of response to the same student utterance type, and then adjusts that

48

Tutoring: Guided learning by doing

value for the agreement that would be due to chance, producing a chi-square statistic to test

for homogeneity of the tutor-student interactions. Our two tutors behaved in very similar

manners towards the students, X
2 < hns. No pedagogical strategies were presented to the

tutors, so this similarity suggests that experienced tutors may share certain behaviors when

examined over periods of tutoring substantial enough to allow a range of problem solving

situations to occur.

In addition to being similar to one another, our tutors also engaged at one time or

another in most of the behaviors previous theorists have highlighted. For example, our

tutors offered confirmations, as Fox (1991) has argued, and offered directive error feedback

like the tutors of Littman et al. (1990) and Schoenfeld et al. (1992). Furthermore the

students and tutors worked together to repair errors as Fox (1991) has suggested and

this collaboration presumably enabled students to feel like they had mastered the problem

solving difficulties as Lepper et al. (1990) has argued. Thus, our tutors were similar to one

another and exhibited at various times the behaviors found in other tutorial studies in other

domains. Although characteristics of the students' abilities and the particular character of

the domain may certainly influence the frequency and implementation strategies for these

tutorial behaviors, the similarity in our tutors and the presence of the range of tutorial

behaviors suggests that we have uncovered some general factors tying tutorial behaviors to

particular problem solving situations that may occur in expert tutoring behaviors in a range

of problem solving domains. In the next section, we present a theory of tutorial guidance

that attempts to describe why the tutorial behavior we found should lead to pedagogical

advantages.

49

Tutoring: Guided learning by doing

A theory of tutorial guidance

Tutors help keep problem solving productive and maximize the learning outcomes of

their students by encouraging and supporting successful problem solving and by providing

feedback to help students retover from errors. In this section, we review the main findings

of this study and present a model of tutorial guidance that accounts for these results.

During problem solving, students encounter impasses and make errors. However, some-

times these errors are not visible until many moves after the error occurred. For example,

opening a chess game by moving the rook's pawn forward one space may seem reasonable to

a novice chess player, and the consequences of this poor choice will not be apparent for some

time. How is a problem solver to understand which one of many moves was responsible for

the poor outcome? Without this knowledge, the problem solver cannot avoid the error in

the next game. This difficulty is often called the credit assignment problem. The credit

assignment problem occurs when a success or failure arises after several steps: a learner

has to figure out which step led to the outcome experienced. This may be a simple task if

there are a small number of steps: however, most classes of problems have more than a few

steps intervening between an event and the associated marker of success or failure, yielding

a large search space.

Clearly, credit assignment could be facilitated by minimizing the number of steps be-

tween signals of success or failure and more focus on the features potentially responsible.

So. for example, a student's learning could be helped if the student could easily determine,

after each step, whether it was correct or not.

Anderson and his colleagues (Anderson et al.. 1985: Anderson. Boyle. Corbett, t Lewis.

1990) have argued for immediate feedback as an effective pedagogical technique in problem

50

Tutoring: Guided learning by doing

solving domains due to the difficulties that error recovery can pose for learning (Anderson.

Conrad. L Corbett, 1989). Anderson and Corbett (1993) argue that immediate feedback

may not lead to superior pedagogical outcomes, but does lead to more efficient learning.

That is, students receiving immediate feedback can learn a domain equally well as students

without the feedback, but can do so up to three times faster.

In fact, our tutors engaged in behaviors that minimized credit assignment to a few events

via Tutor Confirm Steps and Tutor Error Feedback. Our tutors responded to both correct

and incorrect steps very rapidly, sometimes even on the next event, thus minimizing the

space of possible actions that could have lead to an error or success. The Tutor Guidance

further helped encourage students on promising solution paths and helped focus their search

when necessary. Furthermore the very interactive, efficiently communicated nature of this

feedback means that students could respond to the feedback without unduly interrupting

their problem solving effort. This focusing of students' search appears to be a central source

of pedagogical advantage for individualized instruction.

The tutors responded to different types of errors with different feedback strategies. We

next turn to a discussion of the pedagogical benefits of this practice.

There is a trade-off in learning from errors. With each error there are benefits of self-

recovery. Students learn more when they construct explanations for themselves rather than

simply encoding a provided explanation (Chi et al.. 1989). However, the costs of floundering

in time, confusion, and frustration can be serious, especially if students do not construct

explanations. Indeed, the benefit of self-explanation has been primarily demonstrated in

students studying instructional examples rather than interspersing self-explanations in their

own problem solving. We suggest that tutorial response to errors can be explained by

51

Tutoring: Guided learning by doing

comparing the relative weight of the learning opportunity's potential benefits to its potential

costs. We call this relative weighting the learning consequences of an error. By examining

the learning consequences of each of the three types of errors, we will see that the relative

weights of costs and benefit^ predict the type of feedback tutors provided. When there

was a great deal of learning possible from self-recovery, tutors allowed students to perform

as much of the error recovery as possible. However, if the costs of repair outweighed the

benefits, tutors simply told the student how to repair the error, thus keeping the student

on track to a solution.

Recall that there were three types of student errors: syntactic, semantic, and goal errors.

First consider syntactic errors. The syntax of computer programming languages is a source

of difficulty for novices, and novices often spend a great deal of time flailing around trying to

fix errors arising from mistakes in the notational syntax (Anderson et al., 1985; du Boulay,

1986; Reiser et al., 1991).

Programming language syntax is often a source of great difficulty for novices for a variety

of reasons. Among these reasons are that language syntax is often arbitrary and has little

relation to the ways novices think about real-world analogues of the constructs (Bonar «Sc

Soloway, 1985: Trafton k Reiser. 1993b). Further, novices are used to having some margin

for error in communication in the real world, and sometimes fail to consider exactly how

literal one must be when creating a computer program (Bonar & Soloway, 1985; du Boulay.

1986; Pea, 1986). Due to the largely arbitrary nature of syntactic rules, resolving errors

typically relies on weak method search or analogy from examples, not from explanation.

Thus, students may learn little more by repairing errors themselves than by simply being

told how to do the repair. Furthermore, the difficulty of repairing syntactic errors creates

52

Tutoring: Guided learning by doing

a serious danger of floundering. Thus, syntactic errors have low learning consequences.

Accordingly, tutors usually just stepped in and offered a Tutor Correction that told the

student how to repair the error directly, requiring the student only to implement the repair.

This feedback strategy sacrifices the few benefits that might accrue from the repair in favor

of keeping the student on a productive repair path, and since there is little of the recovery

process remaining for the student to do, recovering from these errors is quite rapid.

In a Semantic Error, the student misapplied a LISP function or basic concept. How

should tutors support student reasoning after this sort of error? Semantic Errors usually

received Surface Feature Feedback that pointed to the incorrect feature evident in the

solution. Given how much difficulty novices have locating and repairing recognizing errors

in programs (Katz & Anderson. 1988; Reiser et al., 1991) and the working memory load

caused by the search that interferes with learning (Anderson et al., 1985; Sweller, 1988), one

might expect tutors to simply intervene with feedback that performs all of the components

of the error recovery process in the interest of keeping students from becoming overloaded,

as was the case with syntactic errors. However, a critical component of the learning m

a new domain involves acquiring the semantics of operators and reasoning about their

interactions when learning to construct more complex plans involving the operators (Merrill

& Reiser, 1993; Ohlsson k Rees. 1991; Soloway, 1986). Furthermore, repairing errors often

involves reasoning about causes and consequences of the observed erroneous behavior (Katz

& Anderson, 1988; Spohrer. Soloway, & Pope, 1985), and successful students generate these

sort of explanations in other problem solving situations (Chi et al.. 1989), so self generated

explanations, with tutorial collaboration if necessary, seems a promising mechanism for

students to acquire this knowledge.

53

Tutoring: Guided learning by doing

Since the tutor only pointed the student to the general location of the error, the student

had to recognize what was incorrect in the solution, make an inference about the error's

nature, set a goal to repair the error, and then begin to implement the repair. Thus.

students were able to learn about the domain operators through a very focused learning by

doing session involving recovering from an error. This additional problem solving effort was

reflected in the longer error recovery episodes. The tutors participated in the entire recovery

process as well serving to keep the student from dangerous floundering (cf.. McArthur et al..

1990), and rendering the error recovery work profitable.

The third class of errors concerned the student's manipulation of the goal structure.

Structuring behavior according to goals is a critical feature of learning new problem solv-

ing domains (Anderson. 1983; Newell, 1990; VanLehn, 1990). Indeed, many instructional

theorists have argued that helping students maintain and reflect on a goal structure facil-

itates learning a new domain (Collins & Brown. 1988; Collins, Brown, & Newman. 1989:

Koedinger & Anderson, 1990; McArthur et al., 1990; Merrill & Reiser, 1993; Singley, 1990).

Recall that goal errors occurred when the student's manipulation of the goal structure

faltered. How did tutors offer the required support? A variety of feedback types occurred

on these errors. Surface Feature Feedback, as on the semantic errors, helped students

pinpoint the location in the solution where their reasoning went awry and reconstruct a

more promising solution plan. In other cases, the support took the form of a Tutor Plan-

Based Feedback, reminding the student what the current goal should be. This feedback also

told the student of the location of the error. However, in a Goal Error, the relevant location

was not an explicit component of the solution, but rather a subgoal whose implementation

was faulty or forgotten. Thus, locating the error requires referring to the more abstract goal

54

Tutoring: Guided learning by doing

structure, hence the appropriateness of Tutor Plan-Based Feedback. Although the tutor

can of course offer additional help throughout the repair, this initial feedback alerts the

student to the existence of an error and gives some information about its location, with the

tasks of realizing what has been implemented incompletely, setting the goals to perform the

repair, and actually implementing it remaining to be accomplished. Thus, tutors support

students' maintenance of a goal structure in a similar manner to their support of difficulties

with operators, by pointing students to a location in a structure that will highlight the

error. This allows students the opportunity to perform much of the error feedback, as in

semantic errors, but prevents potential floundering.

Our analyses have shown that tutors modulate their feedback in accordance with learn-

ing consequences. Examining the errors that led to our three types of tutorial feedback

showed that tutors tended to give explicit corrections that contained directions for the er-

ror's repair when an error did not offer the opportunity for significant learning but could

lead to unfruitful floundering. Those low learning consequences errors offer few benefits

of learning by doing, and thus tutors simply tell the student how to repair the error, and

the students do so. In contrast, when it would be beneficial for the student to explain the

erroneous part of a solution and plan the repair, such as in semantic errors, tutors focus

students on the error but let them replan a solution for that goal. When the target concept

is more abstract, such as understanding the goal structure, tutors may leave the analysis

of the error's feature to the student as well. Because of these strategies, students get to

learn to recover from errors by doing, thus actively exercising, testing, and modifying their

problem solving knowledge, but also get protected from some of the more severe costs of

the recovery process by carefully chosen tutorial feedback. This balance of learning by

55

Tutoring: Guided learning by doing

doing and tutorial guidance maximizes the effectiveness of students' problem solving and

underlies the strong learning gains for tutored students.

In this paper, we have presented a model of the relationship between student errors and

feedback, learning consequences, and also described how tutors support ongoing problem

solving through confirmations and rapid error flagging. We now return to the views of

tutoring advocated by the researchers reviewed earlier.

Fox (1991) argued that confirmatory feedback serves a central role in tutorial discourse.

Our results support this, and we argued that the confirmations support problem solving

by enabling students to determine more easily which action was responsible for success

and which knowledge was faulty. Lepper and his colleagues (Lepper et al, 1990; Lepper k

Chabay, 1988) found that tutorial feedback served to help students remain feeling successful,

and that this accounts for tutorial pedagogical benefits. In fact, we found a relative lack

of feedback specifically motivational in character in our data. Presumably, this reflects the

differences in ages and domains between the two studies. This reinforces the importance

of considering the multidimensionality of tutorial behavior, since changes in some of these

dimensions led us to find almost no instances of motivational behaviors that Lepper s tutors

found very important. Lepper's tutors were teaching small children who had already had

difficulty mastering the arithmetic material. This social situation seems destined to bring

out the supportive side of any compassionate instructor. Our students were bright, confident

college-aged students learning a domain for the first time, who presui: ably required less

motivational support. In fact, we suggest that our tutors did achieve positive motivational

benefits but did so by minimizing student frustrations and helping to keep problem solving

productive (cf.. Reiser et al.. 1994). rather than by directly reinforcing students' feeling of

56

Tutoring: Guided learning by doing

success or by helping them explain away difficulties encountered.

Our analyses of tutorial guidance have suggested that part of tutorial effectiveness

relies on tailoring feedback to particular problem solving situations. Indeed, the ability

to individualize guidance to,particular contexts has been proposed as a central advantage

of individualized instruction (Bloom. 1984: Cohen et al., 1982; McArthur et al., 1990)

and has motivated much work in computerized intelligent tutoring systems (e.g., Anderson

et al. 1985; Carbonell. 1970; Goldstein. 1982). In contrast, several studies of tutoring

have suggested that tutors follow a fairly uniform simple sequence of pedagogical actions

while tutoring students, essentially following straightforward curriculum scripts, in which

they present and query topics, backing up and spending more time as needed to cover

troublesome ones (Graesser. 1993: Putnam, 1987; Sleeman, Kelley, Martinak, Ward, k

Moore. 1989). In this view of tutoring, curriculum goals that do not vary across students

account for most tutorial actions.

Our results suggest, at least for tutoring sessions focusing on problem solving, that

this curriculum script model is an incomplete description of student-tutor interactions.

We found that student-tutor dialogues were centered much more around student-initiated

events, as they attempted to actively understand new instructional material and solve

problems, than around tutorial presentation of material and subsequent querying of stu-

dent understanding. These more complex patterns of student-tutor interactions are better

described by a mixed-initiative dialogue (Carbonell, 1970; Collins et al.. 1975) than the

dialogue frames suggested by Graesser (1993) or the curriculum scripts suggested by Put-

nam (1987). The tutors responded with guidance to support and focus students' reasoning,

rather than presenting material themselves and then querying student understanding.

57

Tutoring: Guided learning by doing Jö

A central issue in this type of tutorial guidance concerns how tutors responded to student

errors. As Putnam (1987) and Lepper and Chabay (1988) have pointed out. effective tutors

do not appear to attempt to diagnose the faulty reasoning that caused the students' errors.

For example, tutors do not propose new problems for students to solve purely for the purpose

of discriminating between possible misconceptions that might have caused the error. Tutors

also rarely relate possible lines of student reasoning that could have led to the error. Indeed.

Sleeman and his colleagues have argued that pointing out the students' misconception to

the student is no more effective than simply reteaching the erroneous procedure (Sleeman

et al.. 1989: Sleeman. Ward. Kelly Martinak. k Moore. 1991), which might suggest that

diagnosis is unnecessary. In these views, effective tutorial response to errors consists of

simply reteaching the correct procedure rather than focusing on explanations of why errors

occurred.

Our microanalyses of the student-tutorial interactions in problem solving situations

suggest that tutors do more than simply reteach a correct procedure component when

students encounter impasses or errors. Our tutors focused on guiding the error repair

process rather than on communicating their guesses about the student's misconception.

As Merrill et al. (1992) suggested, whether tutors verbalize diagnoses is a less central

question than whether (and how) they track student reasoning and determine what type of

guidance to provide. The results of our present study demonstrate the ways in which tutors

focus students on detecting and repairing errors. Tutors do not simply correct students

and review relevant curriculum material. Instead, they collaboratively help the students

understand and repair errors. Furthermore, tutors tailor the timing and specific content of

their feedback to the learning consequences of the particular error. Our results demonstrate

Tutoring: Guided learning by doing

that tutors intervene less quickly and leave more of the error repair to students when more

can be learned from the error repair. Thus, rather than a path through a curriculum script

or dialogue frame, we see very careful tracking of student reasoning and modulation of the

timing and nature of feedback depending on the type of error encountered. However, we

should note that, consistent with the reteaching view, the principal goal seems to getting the

problem solving back on track. These errors episodes in general were very short (typically

two or three events) and were always focused on repairing the error, rather than exploring

it.

The careful adaptation of feedback timing and content suggests that a more complex

model than curriculum scripts is needed to explain tutorial behavior. We suggest that

tutorial behavior is better modeled by microplans (McArthur et al., 1990; Schoenfeld et al.,

1992) in which particular tutorial plans are triggered in response to particular student

problem solving situations. Our analyses suggest that the central microplans for modeling

tutorial behavior must track student reasoning and determine when to provide confirmations

or additional guidance upon correct paths, and also specify when to offer feedback to student

errors and how much of the error recovery process to perform after this intervention.

Conclusion

In this study, we used extensive analysis of many hours of student-tutor discourse to

attempt to determine the strategies experienced human tutors use that result in the peda-

gogical advantages of human tutoring. These analyses suggest that tutors assist students

active problem solving with careful guidance, in which the tutor keeps the student's problem

solving on track via ongoing confirmatory feedback and new goals to achieve after correct

steps and error feedback after errors. Students caught some of their own errors, but if the

59

Tutoring: Guided learning by doing

student did not notice an error had occurred, the tutor drew the student's attention to it

relatively quickly.

We argued that the relative weights of the benefits of self-repair versus the costs of

floundering dictated the feedback used by tutors. In situations where an error could lead

to floundering and did not offer significant potential for learning, tutors often told the

student how to repair the error, thereby leaving only the implementation of the repair to

the student. In contrast, tutors offered less support for errors that offered significant benefits

of self-repair. Thus, as learning consequences increased, the tutors allowed the students to

perform more and more of the error recovery, including constructing their own explanations

for the errors and acting on their analyses (cf., Chi et al., 1989) This active self-explanation

and problem solving leads students to develop better models of the behavior of operators

in the domain.

Tutorial guidance allows an extremely effective style of learning by doing — guided

learning by doing. Students can pursue the benefits of actively constructing understandings

and solution plans and implementing them with carefully modulated guidance from the

tutor. Tutors modulate their guidance in response to students' actions and current problem

solving context. Tutors encourage students to continue on profitable paths, and warn

students of errors through explicit and rapid comments that focus students' attention on

sources of errors. When obstacles are encountered, students and tutors collaboratively

effect a repair. During this repair, tutors offer guidance and feedback but do so in a

manner that encourages students to analyze the error and actively contribute to the repair.

This carefully modulated guidance allows the best pedagogical advantages of learning by

doing while minimizing the consequent potential costs of self-directed search for a correct

60

Tutoring: Guided learning bv doing

answer through a very large problem space. This careful tutorial guidance offered during

successful problem solving as well as during difficulties leads tutored students to achieve

the substantial cognitive and motivational advantages observed in individualized tutoring.

61

Tutoring: Guided learning by doing

References

Anderson. J. R. (1983). The architecture of cognition. Harvard University Press. Cambridge.

MA.

<
Anderson, J. R. (1987). Skill acquisition: Compilation of weak-method problem solutions.

Psychological Review. 94- 192-210.

Anderson. J. R. (1989). The analogical origins of errors in problem solving. In Klahr. D..

k Kotovsky, K. (Eds.). Complex information processing: The impact of Herbert A.

Simon. Erlbaum. Hillsdale. NJ.

Anderson. J. R, Boyle, C. F.. Corbett. A. T.. k Lewis. M. W. (1990). Cognitive modeling

and intelligent tutoring. Artificial Intelligence. 42. 7-49.

Anderson, J. R, Boyle, C. F.. k Reiser, B. J. (1985). Intelligent tutoring systems. Science.

228, 456-462.

Anderson. J. R, Conrad. F. C. k Corbett. A. T. (1989). Skill acquisition and the LISP

tutor. Cognitive Science. 13. 467-505.

Anderson. J. R, k Corbett. A. T. (1993). Tutoring of cognitive skill. In Anderson. J. R.

(Ed.), Rules of the mmd. pp. 235-255. Erlbaum, Hillsdale, NJ.

Anderson. J. R, Corbett. A. T.. k Reiser. B. J. (1987). Essential LISP. Addison-Wesley.

Reading, MA.

Anderson. J. R.. k Jeffries. R. (1985). Novice LISP errors: Undetected losses of information

from working memory. Human-Computer Interaction, 1, 107-131.

62

Tutoring: Guided learning by doing

Bakeman. R.. & Gottman. J. M. (1986). Observing interaction: An introduction to sequen-

tial analysis. Cambridge University Press. Cambridge.

Bloom. B. S. (1984). The 2 sigma problem: The search for methods of group instruction

as effective as one-to-one tutoring. Educational Researcher. 13, 4-16.

Bloom, L.. Rocissano. L.. t Hood. L. (1976). Adult-child discourse: Developmental interac-

tion between information processing and linguistic knowledge. Cognitive Psychology.

8. 521-551.

Bonar. J. G., & Soloway. E. (1985). Preprogramming knowledge: A major source of mis-

conceptions in novice programmers. Human-Computer Interaction, 1, 133-161.

Carbonell. J. R. (1970). AI in CAI: An artificial intelligence approach to computer-aided

instruction. IEEE Transactions on Man-Machine Systems. 11, 190-202.

Castellan, Jr., N. J. (1979). The analysis of behavior sequences. In Cairns, R. B. (Ed.).

The analysis of social interactions: Methods, issues, and illustrations, pp. 81-116.

Lawrence Erlbaum Associates. Hillsdale. NJ.

Chi, M. T. H., Bassok. M., Lewis, M. W.. Reimann, P., k Glaser, R. (1989). Self-

explanations: How students study and use examples in learning to solve problems.

Cognitive Science. 13, 145-182.

Cohen. J. (1960). A coefficient of agreement for nominal scales. Educational and Psycho-

logical Measurement. 20. 37-46.

Cohen. P. A.. Kulik. J. A., «k Kulik. C.-L. C. (1982). Educational outcomes of tutoring: A

meta-analysis of findings. American Educational Research Journal, 19, 237-248.

63

Tutoring: Guided learning by doing

Collins. A.. & Brown. J. S. (1988). The computer as a tool for learning through reflection.

In Mandl, H., k Lesgold. A. (Eds.). Learning issues for intelligent tutoring systems.

pp. 1-18. Springer-Verlag. New York.

Collins. A.. Brown, J. S.. ti Newman. S. E. (1989). Cognitive apprenticeship: Teaching

the crafts of reading, writing, and mathematics. In Resnick. L. B. (Ed.), Knowing,

learning, and instruction: Essays in honor of Robert Glaser, pp. 453-494. Erlbaum.

Hillsdale, NJ.

Collins. A., t Stevens. A. L. (1982). Goals and strategies of inquiry teachers. In Glaser. R.

(Ed.), Advances in instructional psychology, Volume 2, pp. 65-119. Erlbaum. Hills-

dale, NJ.

Collins, A., Warnock, E. H.. k Passafiume, J. J. (1975). Analysis and synthesis of tutorial

dialogues. In Bower. G. H. (Ed.), The psychology of learning and motivation, pp.

49-87. Academic Press. New York.

du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational

Computing Research. 2, 57-73.

Ericsson. K. A., k Simon. H. A. (1984). Protocol analysis: Verbal reports as data. MIT

Press, Cambridge, MA.

Faries, J. M. (1991). Reasoning-based retrival of analogies. Ph.D. thesis. Department of

Psychology, Princeton University, Princeton. NJ.

Fisher, C. (1991). Protocol analyst's workbench: Design and evaluation of computer-aided

protocol analysis. Ph.D. thesis. Carnegie-Mellon University. Pittsburgh, PA.

64

Tutoring: Guided learning by doing

Fox. B. A. (1991). Cognitive and interactional aspects of correction in tutoring. In

Goodyear. P. (Ed.), Teaching knowledge and intelligent tutoring, pp. 149-172. Ablex.

Hillsdale. NJ.

Gentner. D. (1983). Structure mapping: A theoretical framework for analogy. Cognitive

Science, 7, 155-170.

Gick, M. L., k Holyoak. K. J. (1980). Analogical problem solving. Cognitive Psychology,

12. 306-355.

Goldstein. I. P. (1982). The genetic graph: A representation for the evolution of procedural

knowledge. In Sleeman, D. H., k Brown, J. S. (Eds.), Intelligent tutoring systems,

pp. 51-77. Academic Press, London.

Graesser. A. (1992). Questioning mechanisms during complex learning. Tech. rep., Memphis

State University, Memphis. TN.

Graesser, A. C. (1993). Dialogue patterns and feedback mechanisms during naturalistic

tutoring. In Proceedings of the Fifteenth Annual Conference of the Cognitive Science

Society Boulder, Colorado.

Graesser, A. C, Person, N. K., k Huber. J. D. (1993). Question asking during tutoring and

in the design of educational software. In Rabinowitz, M. (Ed.), Cognition, instruction,

and educational assessment. Erlbaum, Hillsdale, NJ.

Grice. H. P. (1975). Logic and conversation. In Cole, P.. k Morgan. J. L. (Eds.). Syntax

and semantics, Vol. 3. Academic Press, New York.

65

Tutoring: Guided learning by doing

Katz. I. R.. k Anderson. J. R. (1987-1988). Debugging: An analysis of bug location

strategies. Human-Computer Interaction. 3. 351-399.

Kerry. T. (1987). Classroom questions in england. Questioning Exchange, 1, 32-33.

<
Koedinger. K. R., k Anderson. J. R. (1990). Abstract planning and perceptual chunks:

Elements of expertise in geometry. Cognitive Science. 14, 511-550.

Laird, J. E., Rosenbloom. P. S.. k Newell. A. (1986). Universal subgoaling and chunk-

ing: The automatic generation and learning of goal hierarchies. Kluwer Academic

Publishers, Hingham. MA.

Lepper, M. R., Aspinwall. L.. Mumme. D., k Chabay, R. W. (1990). Self-perception

and social perception processes in tutoring: Subtle social control strategies of expert

tutors. In Olson. J. M., k Zanna. M. P. (Eds.), Self inference processes: The sixth

Ontario symposium in social psychology, pp. 217-237. Erlbaum. Hillsdale, NJ.

Lepper, M. R., k Chabay, R. W. (1988). Socializing the intelligent tutor: Bringing empathy

to computer tutors. In Mandl. H.. k Lesgold, A. (Eds.), Learning issues for intelligent

tutoring systems, pp. 242-257. Springer-Verlag, New York.

Lewis, M. W., k Anderson, J. R. (1985). Discrimination of operator schemata in problem

solving: Learning from examples. Cognitive Psychology, 17, 26-65.

Littman. D. (1991). Tutorial planning Schemas. In Goodyear. P. (Ed.), Teaching knowledge

and intelligent tutoring, pp. 107-122. Ablex. Hillsdale. NJ.

Littman. D.. Pinto. J.. k Soloway, E. (1990). The knowledge required for tutorial planning:

An empirical analysis. Interactive Learning Environments, 1. 124-151.

66

Tutoring: Guided learning by doing

Mayer, R. E., Dyck. J. L.. k Vilberg, W. (1986). Learning to program and learning to

think: What's the connection?. Communications of the ACM. 29. 605-610.

McArthur, D., Stasz. C. k Zmuidzinas, M. (1990). Tutoring techniques in algebra. Cog-

nition and Instruction, 7, 197-244.

McKendree, J. (1990). Effective feedback content for tutoring complex skills. Human-

Computer Interaction. 5, 381-413.

Merrill, D. C, k Reiser. B. J. (1993). Reasoning-congruent learning environments: Scaf-

folding learning by doing in new domains. Manuscript in preparation, Northwestern

University.

Merrill, D. C, Reiser. B. J.. Ranney, M.. k Trafton, J. G. (1992). Effective tutoring

techniques: A comparison of human tutors and intelligent tutoring systems. The

Journal of the Learning Sciences, 2, 277-306.

Moore, J. D., k Swartout. W. R. (1989). A reactive approach to explanation. In Mridharan.

N. S. (Ed.). Proceedings of the Eleventh International Joint Conference on Artificial

Intelligence, pp. 1504-1510 San Mateo, CA. Morgan Kauffman.

Newell, A. (1990). Unified theories of cognition. Harvard University Press, Cambridge, MA.

Ohlsson, S., k Rees. E. (1991). The function of conceptual understanding in the learning

of arithmetic procedures. Cognition and Instruction. 8, 103-179.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.

Inc., New York.

67

Tutoring-: Guided learning by doing

Pea. R. D. (1986). Language-independent conceptual 'bugs' in novice programming. Journal

of Educational Computing Research. 2. 25-36.

Pirolli, P. (1991). Effects of examples and their explanations in a lesson on recursion: A

production system analysis. Cognition and Instruction. 8. 207-259.

Putnam, R. T. (1987). Structuring and adjusting content for students: A study of live and

simulated tutoring of addition. American Educational Research Journal, 24, 13-48.

Reiser, B. J.. Beekelaar. R.. Tyle. A., k Merrill. D. C.-(1991). GIL: Scaffolding learning to

program with reasoning-congruent representations. In The International Conference

of the Learning Sciences: Proceedings of the 1991 conference, pp. 382-388 Evanston.

IL. Association for the Advancement of Computing in Education.

Reiser, B. J., Copen, W. A.. Ranney, M.. Hamid. A., k Kimberg, D. Y. (1994). Cognitive

and motivational consequences of tutoring and discovery learning. Tech. rep., The

Institute for the Learning Sciences. Northwestern University, Evanston, IL.

Reiser. B. J.. Kimberg, D. Y.. Lovett, M. C. k Ranney, M. (1992). Knowledge representa-

tion and explanation in GIL, an intelligent tutor for programming. In Larkin, J. H..

k Chabay, R. W. (Eds.). Computer-assisted instruction and intelligent tutoring sys-

tems: Shared goals and complementary approaches, pp. 111-149. Erlbaum, Hillsdale.

NJ.

Scardamalia. M.. Bereiter. C. McLean. R. S.. Swallow. J.. k Woodruff, E. (1989).

Computer-supported intentional learning environments. Journal of Educational Com-

puting Research. 5. 51-68.

68

Tutoring: Guided learning by doing

Schänk. R. C k Leake. D. B. (1989). Creativity and learning in a case-based explainer.

Artificial Intelligence. 40. 353-385.

Schoenfeld. A. H., Gamoran. M.. Kessel, C. k Leonard, M. (1992). Toward a comprehensive

model of human tutoring in complex subject matter domains. Paper presented at the

Annual Meeting of the American Educational Research Association. San Francisco.

CA.

Singley, M. K. (1990). The reification of goal structures in a calculus tutor: Effects on

problem solving performance. Interactive Learning Environments. 1, 102-123.

Sleeman, D., Kelley, A. E.. Martinak. R., Ward, R. D., k Moore, J. L. (1989). Studies of

diagnosis and remediation with high school algebra students. Cognitive Science, 13,

551-568.

Sleeman, D., Ward, R. D., Kelly, E., Martinak, R., k Moore, J. (1991). Overview of

recent studies with PIXIE. In Goodyear. P. (Ed.), Teaching knowledge and intelligent

tutoring, pp. 173-185. Ablex. Hillsdale. NJ.

Soloway, E. (1986). Learning to program = learning to construct mechanisms and expla-

nations. Communications of the ACM, 29, 850-858.

Spohrer, J. C., Soloway, E.. k Pope, E. (1985). A goal/plan analysis of buggy PASCAL

programs. Human-Computer Interaction, 1, 163-207.

Sweller. J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive

Science. 12, 257-285.

69

Tutoring: Guided learning by doing

■u • onf qtudvine examples and solving v» IG &ReiSer,B.J.(1993a).Thecontnbnuonsofstudymg
Trafton. J. G., & Reiser, ^^ fl/

problems to skill acquisition. In Proceeamgs of the Fift

^C^« Science Society, PP. 1017-1022 Boulder. CO.

f forward and backward reasoning in
ov * T r & Reiser. B. *. (1993b). Novices use of forward
Trafton, J.G..fcRe1Ser rpnaration Northwestern University.

a new problem solving domain. Manuscript m preparation,

V Lhn K ^^^^^^'^^^^^ VanLehn. K. ^laoöj. SDringer-Verlag.

New York. New YorK.

, K 77,, on«« 0/ P^ecW misconception*. MIT Press.
VanLehn. K. (1990). Mind bugs: The ongrns oj

Cambridge, MA.

nw M T H (1992) A model of the self-explanation effect.

VanLehn. K., Jones, R- & Chi, M. T. H. (1992).

The Journal of the Learning Sciences. 2. 1-59.

70

Tutoring: Guided learning by doing

Appendix A: Instructions for Coders and Reliability Coders

Segmentation Instructions

1. Break a new segment if and only if you can clearly demonstrate a need to do so. In
<

other words, a segment should be continued until a concept is introduced that was

not present before.

2. Pronouns are tricky. If you are segmenting and run across a new usage of some

pronoun (e.g., "it"), try to find the meaning of the pronoun in the current segment.

Only break a segment when a pronoun is introduced if the pronoun cannot be bound

to a noun in the current segment.

3. Segments can continue across interruptions if the interruption is not heeded by the

speaker. If something is said as an interruption (no matter how small) that the

speaker responds to in any way, a new segment must be made for the interruption.

4. Segmentation based solely upon typing must be done very carefully, because there is

very little information in a typing episode. Thus, a segment can be made if the student

completes a complete LISP action (defun, function call) or if there is conversation

during the typing, but never within a defun.

5. Segmentation is independent of categorization. Don't worry about what a segment

will be - break according to the rules above.

Coding Instructions

1. Each segment must receive 1 and only 1 of the codes that appear in the attached

pages.

71

Tutoring: Guided learning by doing

2. Categorize based upon what was said, not what you think the utterance meant. The

codes are grouped into questions and assertions. If you are categorizing a question,

the code you apply must be one of the question codes, etc.

3. The default categories'are marked. Unless you have definite reason to do otherwise,

you should use the default category.

4. Do not "read into" category definitions. If an utterance does not quite fit category

A. it does not fit! Do not stretch the categories to fit an utterance.

5. Sometimes a typing episode will be in the middle of a segment. Encode this segment

according to the most important element. For example., if the person is simply saying

what they are typing, the segment should be categorized as typing, and so forth.

72

Tutoring: Guided learning by doing

Appendix B: Definitions of Coding Categories

The categories are grouped here as they were in Tables 3 and 4. All examples are taken

verbatim from the actual protocols.
<

The student constructs a solution (Student Problem Solving Action)

Student Correction: This category consists of self-corrections by the student, in which

the student has made an error, but immediately recognizes it and suggests how to fix it.

Oh. I need a quote before that!

Whoops, I need to add a parenthesis there.

Student Elaboration: An utterance is categorized as an Elaboration if the student is

answering a question, without providing actual data (which would be a Student Simulate

Process, see below), or is simply adding to the information already presented in the con-

versation. Thus, Student Elaboration is a default category for student to tutor assertions

that are task related, but do not fit any other category.

OK, an empty list.

The rest of the sentence after by ...

Student Example: The student produces a concrete example to demonstrate some point,

or to ask a question.

What about "a" and "(b c d)"l

What about nil then?

73

Tutoring: Guided learning by doing

Student Focus Attention: The student causes some item in the book or on the screen to

become the focus of the conversation.

And this cond is the thing we're finding.

Oh. they're talking about this!

Student Indicate Difficulty: The student remarks that a problem is difficult (or long.

and so forth), or makes some comment indicating that he or she thinks the next section

will be hard.

Writing this would be a problem.

Boy this is long!

Student Indicate Lack of Understanding: These utterances tell the tutor that the student

is confused. This could be done directly, or indirectly such as through several repetitions

of the same word, without making any progress toward answering the question (as in the

second example).

I don't understand what they mean here.

Oh, parameters, parameters are ... umm ... they're uhh ...

Student Read: The student reads from the textbook. This is marked in the transcripts

by markers such as "[2.1]". The numbers reflect the section of the text being read.

Student Refer: The student refers to other material to shed light on the current situation.

The material could be a previous problem, a section of the text that was already read.

The important aspect is that the student uses previous work to cast light on the current

situation.

74

Tutoring: Guided learning by doing

This is just like what we did yesterday, the pal thing.

Actually, this would have been true if this is greater than. It's just the same

thing.

<

Student Set Goal: The student sets a goal for what to do next, or indicates how to do

the next step. Thus, this category includes both statements about goals and the plans that

can achieve them.

So they want us to write down for each//

Now I have to put the quote.

Student Type: The student types into the LISP interpreter, or writes on the paper.

This is denoted by either "(writing)" or by the time the student began typing, such as

"[20:26:23]".

[20:10:45]

Then this, (writing)

The student asks for help from the tutor

Assist Plan Assertion: This category contains utterances that request an evaluation of

the student's plan or understanding of the problem.

But we can't do. can't we do cons twice or something?

Do I ... do I go zerop num?

75

Tutoring: Guided learning by doing
'■a

Assist Plan Question: This category consists of utterances that are requests for the tu-

tor's help in deciding what to do next. These utterances can be implied or actual questions.

Now I should do ...

<
I don't know what to do now.

Assist Understanding: This category contains utterances that ask for the tutor to eval-

uate the student's understanding of a LISP concept. These utterances can be questions or

implied questions.

Do you mean to say it can't be more than one, right?

But what do you mean by variable, this is the variable?

Student Informational Request: This is the most conservative student to tutor request

category. If there is no reason to think that a student request is either an Assist Under-

standing or an Assist Plan, then the utterance should be coded as this. This category also

includes requests such as how to use the editor, how to type parentheses.

Exit-with-save was what. F9?

But why are they saying that it's surprising?

The student indicates that the tutor's utterances were understood

Student Confirmation: The student says something to indicate that he or she is following

along with what the tutor said, either by some sort of restatement or a simple "OK.

76

Tutoring: Guided learning by doing

It can be very complex. I understand.

Yes. this is what we want.

<
The student checks the current answer

Student Simulate Process: This category is similar to Elaborate, with a crucial differ-

ence. SSP contains utterances that require the student to work through the behavior the

computer would execute on the current example, either verbally or nonverbaily. In other

words, utterances that describe how the LISP would actually process some definition are

SSP. In addition, utterances that produce data output from functions falls here as well.

since to produce data, the student must have urun the function" in his or her head.

And then after that's done, see I want to put d again, and again the same thing.

Oh this will give me (plum apple cantaloupe grape).

Miscellaneous non-task-related utterances

Student Comment: This category contains unclassifiable utterances and unrelated talk.

In addition, if a student makes an assertion that cannot be put into another category

because it is unclear what is being said, the utterance is categorized here.

Oh, hi there, just a second.

Well. you. this is//

77

Tutoring: Guided learning by doing

The tutor performs a portion of the problem solving;

Tutor Example: This is the tutorial version of Student Example; thus, this category

consists of the tutor proposing a concrete example to be worked on. This is listed as a

question, because these utterances often take the form of "What about list a b c?"

OK. how about the input nil there?

What about using "(a bed)" there?

Tutor Focus Attention: This is the tutorial version of Student Focus Attention, and

consists of the tutor making something the topic of conversation, without giving any new

information about it. Thus, the tutor could be pointing to something in the text, or to

something that had just been said.

This is remember, a variable now.

And defun always returns the name of the function.

Tutor Read: This is the tutorial version of Student Read. The tutor reads from the

textbook, and is denoted by marker such as "[2.1]" The numbers refer to the section of the

text that the tutor read.

Tutor Refer: This is the tutorial version of Student Refer. These utterances involve

the tutor bringing previous work to bear on the current situation. The work could be a

previous part of the textbook, or a previous problem, or even an alternate way of solving

a problem.

Just like car and cdr and cons have names, if you're defining a new function you

need to give it a name.

Tutoring: Guided learning by doing

It's just like what you were doing yesterday, figuring out what you want to do.

Tutor Type: This is the tutorial version of Student Type, and is either marked with the

time the typing occurred or with "(writing)".
<

[20:10:45]

Then this, (writing)

The tutor offers guidance for the student's ongoing problem solving

Tutor Confidence Builder: The tutor expresses confidence in the student's ability to

solve the problem or offers praise to the student about a specific problem solving success.

It's really good that you thought to put this first!

Yeah, but the last one will be easy for you.

Tutor Hint: This category captures tutorial utterances that hint at the next step, but

do not give it fully. Thus, these utterances are similar to Tutor Set Goal (see below), but

are not as directive — rather, they just suggest a course of action to be considered.

Remember, you have the less-than and greater-than predicates.

For example, what about the predicate that tests atom?

Tutor Indicate Difficulty: This is the tutorial version of Student Indicate Difficulty. This

category includes utterances that describe the current problem as hard or long, and so on.

or tell the student that the next set of problems will be very difficult.

79

Tutoring: Guided learning by doing

But you see. this is the complex part.

And I have to warn you. these are getting tougher, so don't worry if it takes

you longer.

Tutor Set Goal: This is the tutorial version of Student Set Goal, and includes assertions

about what to do next, or how to do it. The statement may refer to a new goal, or to a

plan that achieves a stated goal.

So now. if you. you could type this in. We can do some examples with it.

So you'll need the function name, then the parameters, and then the body.

Tutor Supportive Statement: This category contains utterances which are designed to

make the student aware that the tutor is there to help if needed.

And then, whenever you have a question, just let me know.

I can help you if you need it.

The tutor confirms a student step (TCS)

Tutor Confirmation: This is the tutorial version of Student Confirmation. Thus, these

utterances indicate that the tutor is following along with what the student is saying or

doing. This could be done via a restatement or a simple "OK." Notice that this category

includes the tutor telling the student that the step is right or saying that the student's last

comment was understood.

Flight, uh huh.

Yes, this part.

80

Tutoring: Guided learning by doing

Tutor Elaboration: This is the tutorial version of Student Elaboration. Tutor utterances

are categorized as Elaborations if the tutor answers a question, without providing explicit

data or output of a function (which would be a Tutor Simulate Process, see below), or is

simply saying something whjch adds to the information present in the discussion. This is

a default tutorial utterance, so if a tutorial assertion seems on task, but does not fit any

other category, it should go here.

Right, because it's embedded in this bigger list, but when you take it out. this

is just like a list with two separate ...

And divide is slash which is near the question mark.

The tutor gives error feedback after an incorrect student step

Tutor Correction: This is the tutorial version of Student Correction, and involves the

tutor telling the student exactly how to fix an error. The presence of a direct statement

of how to fix the error is the marker of a Tutor or Student Correction. The subject of the

correction and the amount of explanation in the correction can vary, but there must be an

explicit direction for fixing the error.

And one more for this one.

No. in a list.

Tutor Plan-Based Feedback: This is one of the forms of tutorial error feedback. This

type of feedback requires that the tutor knows what the student was trying to do when

the error occurred. If the student makes an error and the tutor responds to that error

81

Tutoring: Guided learning by doing

by referring the student to the goal that the student should have been working on. that

utterance should be categorized as a Tutor Plan-Based Feedback. These utterances are

similar to Tutor Set Goal (see below), except that they occur after an error and refer to

the goal the student should have been following.

Well, you'll want to use and and or, not two or's.

Oh wait, you don't want to, you don't want to return now.

Tutor Surface Feature Feedback: This is another type of tutorial error feedback. This

type of feedback points the student to the feature of the solution that is incorrect. The

feature could be syntactic or it could be relating to the function the student chose, and so

forth. The identifying elements of this category are that an error has occurred, and that

the tutor simply makes the student aware of the surface feature that is wrong.

Well, actually, listp would return true for an empty list, also.

Quote why is not a function.

The tutor attempts to assess the student's understanding of a topic

Tutor Probe: The tutor tries to determine what the student knows about some topic.

The topic could be a LISP function, a problem, and so forth.

OK. now do you remember that?

OK. so how manv elements?

82

Tutoring: Guided learning by doing

Tutor Prompt: This category is for tutor utterances that are asking for the student's

next step. So the tutor could be asking for the next step of a problem, of an example, or

of the understanding of a problem.

So what will that part'return?

Cons that atom into the list, and then [pause]?

The tutor helps the student check the current answer

Tutor Simulate Process: This is the tutorial version of Student Simulate Process, and

includes utterances that include the production of data in the manner that LISP would.

That is, the tutor works through the behavior the computer would execute on the LISP

code; this could be verbal or non-verbal. If the tutor produces actual data output from a

function, the code must have been run in the tutor's head, so the utterance is categorized

here.

So this is not a list, and it returns nil.

If you call the function atom, on nil. it returns true, because it says that nil is

an atom. It also returns nil if we do it on listp.

Miscellaneous non-task-related utterances

Tutor Comment: This is the tutorial version of Student Comment. This category

consists of tutor utterances which were either unrelated to the task or uninterpretable.

Whoops, let me turn this off.

Do you want a drink?

83

Tutoring: Guided learning by doing

Appendix C: Transitions between events

Insert Table 14 about here

84

Tutoring: Guided learning by doing

Author Notes

This work was supported in part by contracts MDA903-87-K-0652 and MDA903-90-C-0123

to Princeton University and contract MDA903-92-C-0114 to Northwestern University from

the Army Research Institute, and a grant from the Spencer Foundation. The views and

conclusions in this document are those of the authors and should not be interpreted as

necessarily representing the official policies of those institutions. The comments of Pe-

ter Pirolli and an anonymous reviewer significantly improved this paper. We also grate-

fully acknowledge the programming assistance of Jeremiah Faries. comments from David

McArthur. Michael Ranney. and Richard Beckwith. and assistance from Holly Hillman and

Jason Thompson. Diane Schwartz was of invaluable assistance with several of the figures

presented in this paper. Portions of these analyses were presented at the Annual Meeting

of the American Educational Research Association, March, 1992. Address correspondence

to Douglas C. Merrill, RAND. 1700 Main Street, Santa Monica, CA. 90407-2138.

85

Tutoring: Guided learning by doing

Table 1: Transcript of a LISP tutoring session

1. Student: [typingj
(defun classify-sentence (sent)
2. Tutor: So, that's a very long function name!
3. Student: [typing]
(cond ((or (equal (car sent) 'why)

(equal (car sent) 'how)) 'question)
((and (member 'was sent)
(member 'by sent)) 'passive)
(t 'active)))

All-righty. Yeah, [typing] (classify sentence (mary
4. Tutor: You have to quote the thing here, or else it'll think it's a function

call, [pause] They give you some examples, if you wanna use theirs.=
5. Student: =Oh, sure.= [typing]
<DELxDEL>'(mary threw the snowball at steve))

6. Tutor: = or you could just make up some.
7. [Computer returns "Undefined variable sentence"]
8. Student: Oops, (pause) Oh, I forgot to put the dash.
9. Tutor: Yup! So it thought it was a variable.
10. Student: [typing] (classify-sentence '(man- threw the snowball at steve))

Nice!
11. Tutor: Good.
12. Student: I think I'll try one more now.
13. Tutor: Do you understand the difference between and and or now?
14. Student: Uhh ... let's see.
15. Tutor: [unintell] //
16. Student: If .. and needs both of them to be true, and then it returns true.

17. Tutor: Um hmm.
18. Student: And or just needs one of them to be true, and it returns true.

19. Tutor: Right.
21. Student: But if both of them are nil in or, then it would return nil.
22. Tutor: Right. And in both of them, or and and, it doesn't necessarily return

the letter t. It'll return whatever true value that it gets to.
23. Student: Uhh ... I wonder - I wonder how that worked in my function that

I just wrote.
24. Tutor: That's fine, because the cond knows, cond knows that anything

that's not nil is like true.

86

Tutoring: Guided learning by doing

Table 2: A student-tutor interaction after the segmentation and categorization process

1. TFA

2. SC
3. Comm
4. SC
5. TSP

6.
7.

SC
TSG

8.
9.
1C

SC
TElab

. TFA

11. TSP

12. SC
13. TSP

14. TSP

15. SC

Tutor: So in this example down here? See how they have two
separate=
Student: Yeah.
Tutor: =parameters.
Student: Yeah.
Tutor: ... So. if you
Student: That makes sense.
Tutor: called insert-second on. like. ... dog, and then the list (bird

cat egg),
Student: Hmm.
Tutor: =then item would always refer to dog, for your function

call,=
Student: Right.
Tutor: =and oldlist would always refer to that list. bird, cat,
whatever.
Student: Okay.
Tutor: And then you have to figure out what exactly you want it
to do.
Student: Right.
Tutor: Using those functions we learned yesterday, [pause]
Tutor: This is a, this is a good example, I like this ... thing. 'Cause
this shows how LISP is actually going through and interpreting it.
Tutor: So, let's say you typed in this, umm, function call- function
definition of double. Telling you the parameter is num, so there's
only one parameter, you're only going to have one argument. But
then if they call, if you call double, on this other function, it's kind
of interesting to see how it actually evaluates that because this
whole list, (+ 5 10), is going to eventually be assigned to num.
Student: Okay.
Tutor: Umm. but first, okay, it looks at double, it knows this is the
definition it's gonna use. and then it has to evaluate that argument.
So it works inside-out. like it did, like we were looking at yesterday.
Tutor: It figures out what five plus ten is, gets 15, then it assigns
15 to num, binds num
Student: Mmm hmm.
Tutor: to 15. that's the words they use. and uhh, ...so then, in
the rest of the body, [laughs] that one line, num substitutes-is
substituted with 15. So it looks at the body, (* num 2). num is
evaluated and num gets 15. 2 stays itself, and then it applies the
multiplication, multiplies 15 by 2, and this line returns 30. Now
whatever the body of the function returns, the whole function will
return, so actually 30 will get printed out there.
Student: That makes sense.

87

Tutoring: Guided learning by doing

<

Table 3: Categories of student actions in the student-tutor discourse

• The student constructs a solution to a problem (Student Problem Solving Action).

- Student Correction [SCri

- Student Elaboration [SElabi

- Student Example jSEj
- Student Focus Attention iSFAl

- Student Indicate Difficulty [SIDj
- Student Indicate Lack of understanding [ILU]

- Student Read [Read]

- Student Refer [SRefer]

- Student Set Goal [SSG]

- Student Type [Typej

• The student asks for help from the tutor.

- Assist Plan Assertion [APA]

- Assist Plan Question [APQ]
- Assist Understanding [AU]
- Student Informational Request [SIR]

• The student indicates that the tutor's utterances were understood.

- Student Confirmation [SC]

• The student checks the current answer.

- Student Simulate Process [SSP]

• Miscellaneous non-task-related utterances.

- Student Comment [Comm]

88

Tutoring: Guided learning by doing

Table 4: Categories of tutorial actions in the student-tutor discourse

<
• The tutor performs a portion of the problem solving.

- Tutor Example [TE]

- Tutor Focus Attention [TFA]

- Tutor Read [Read]

- Tutor Refer [TReferj
- Tutor Type [Typej

• The tutor offers guidance for the student's ongoing problem solving.

- Tutor Confidence Builder [CB]

- Tutor Hint [Hint]

- Tutor Indicate Difficulty [TID]

- Tutor Set Goal [TSG]
- Tutor Supportive Statement [SS]

• The tutor confirms a student step (TCS).

- Tutor Confirmation }TC]

- Tutor Elaboration [TElab]

• The tutor gives error feedback after an incorrect student step.

- Tutor Correction [TCr]

- Tutor Plan Based Feedback [PBF;

- Tutor Surface Feature Feedback [SFF]

• The tutor attempts to assess the student's understanding of a topic.

- Tutor Probe [Probe]

- Tutor Prompt [Prompt]

• The tutor helps the student check the current answer.

- Tutor Simulate Process [TSP]

• Miscellaneous non-task-related utterances.

- Tutor Comment [Comm'j

89

Tutoring: Guided learning by doing

Table 5: A listing of each error category used, its frequency of occurrence, and its definition

Error type Frequency
Typographical 360

Syntactic 435

Semantic: Operator 123

Semantic: Concept 59

Goal: Incorrect 178

Goal: Skipped Goal 69

Category definition
A typing error, involving a misspelling or an illegal
keystroke.
The addition of an unneeded parenthesis or quo-
tation mark or the deletion of one that is needed.
Asserting that a function does something it does
not do or attempting to apply a function when it
can not be applied.
An error relating to the concepts atom, list, nil.
variable, or elements (of a list).
Stating a goal to achieve that is not needed in
the problem or will not help the student solve the
problem.
Skipping a goal that is needed in the problem.
This could occur when setting up an initial goal
structure or when solving the problem, and re-
quires explicit evidence that the student has failed
to achieve some subgoal.

9U

Tutoring: Guided learning by doing

Table 6: Examples of Tutor Confirmations in ongoing problem solving

1. SPSA Student: So, you do defun. um, first-elem.
2. SPSA Student: [typing] (defun first-elem
3. TCS Tutor: Right, that's the function name.
4. TID Tutor: Now comes the tough part.
5. SPSA Student: Now comes the parameters.
6. TCS Tutor: The parameter list, right.
7. SPSA Student: So, it just needs to have a list.
8. TCS Tutor: Um hum.
9. SPSA Student: It would just be list.
10. SPSA Student: [types] (list)
11. TCS Tutor: Sure.

91

Tutoring: Guided learning by doing

Table 7: A typical example of an error flagged by the student.

1. SPSA Student: [typing] palp (a b c c b a))
[error: there needs to be" a quotation mark before the list)

2. SCr Student: Oh, I didn't put the, uh //
[flag for previous step]

3. TElab Tutor: Quote.
4. SC Student: Quotes.
5 TCS Tutor: Right.
6. SPSA Student: [types repair]

92

Tutoring: Guided learning by doing

Table 8: An example of the tutor flagging a student error

1. SPSA Student: [Pause.j So you could use or. [unintel.] Cond. [Pause.]
Um, equal [pause) argl, true [pause]
[error: the argument may not be equal to true]

2. SFF Tutor: Right. But what if it was, like, the atom dog. That counts as true=
[flag for error in step 1]

3. SC Student: =Uh-huh.

93

Tutoring: Guided learning by doing

Table 9: An example of a Tutor Correction following a Syntactic Error

1. SPSA Student: [typing] (back (a b c)
[error: should have been '(a b c)\

2. TCr Tutor: Now remember to quote that=
Student: =Umm.=
=argument. (a b c).

3. SPSA Student: [Begins typing repair]
... '(a b c))

94

Tutoring: Guided learning bv doing

Table 10: An example of a Tutor Surface Feature Feedback following a Semantic Error

1. SPSA Student: [types] (defun numlme (num.)
2. SPSA Student: So you're putting together two lists if [laugh]
3. TSG Tutor: If the first one is zero.
4. SPSA Student: If number is zero. And nil otherwise ...
5. SPSA Student: [types] (append

[error: append can not be applied to non-list arguments]
6. SFF Tutor: Remember append, what ap ...

What append's arguments must be, though.
7. SPSA Student: Oh, two lists.
8. TCS Tutor: Right
9. Comm Student: So [laughs]
10. Prompt Tutor: 'Cause if, if it comes out with t=
11. SPSA Student: =L it's not going to be a list
12. TCS Tutor: It's not a list, right.
13. SPSA Student: OK. then I just have to make, have to create a list.
14. SPSA Student: [types] ... list

[Error in step 5 is repaired here.]

95

Tutoring: Guided learning by doing

Table 11: An example of a Tutor Plan Based Feedback following a Goal Error

1. SPSA Student: [typing]
(defun carlis (oldlist)
(cond ((listp oldlist) (car oldlist
[error: this is not the first case]

2. PBF Tutor: eh urn, a good, uh. kinda like a good thing to keep in mind then in
ordering is to put the, most specific thing first ... most specific test first.

3. SPSA Student: [Begins typing repair, deletes first case]
((null oldlist) 'nil)

4. TCS Tutor: Right, this is a case where you do need two parens.
5. TCS Um, it's kind unique, because the first paren is the starting of the case, and

then the second one is for the function that you are about to call.

6. SC Student: ok ok
7. TElab Tutor: If vou call a function.

96

Tutoring: Guided learning by doing

Table 12: Examples of all three types of explicit error feedback for different error types

1. Syntactic error: Student types (member item 'Us) - there should not be a
quotation mark before the lis.

a. Tutor Correction: "You should remove the quote before lis"
b. Tutor Surface Feature Feedback: "Remember, a quoted atom is treated

literally, it's not evaluated."
c. Tutor Plan-Based Feedback: "I think you wanted to look for item in the

value of lis, not in the atom lis.

2. Semantic Error: When attempting to get the element following some tar-
get item in a list, the student types (car (member item lis)), apparently
forgetting that member returns a list of item and all items following it in lis.

a. Tutor Correction: "You want the car of the cdr of the return."
b. Tutor Surface Feature Feedback: "Remember member returns the tail of the

list starting with the item."
c. Tutor Plan-Based Feedback: "Didn't you want to get the element after

item?"

3. Goal Error: When trying to see if two items are both lists in the context of
a larger problem, the student types (or (or (listp argl) (lisip arg2))), but
the inside or should be an and.

a. Tutor Correction: "The second or should be an and."
b. Tutor Surface Feature Feedback: "You don't want two or's, do you?"
c. Tutor Plan-Based Feedback: "You meant to see if both things were lists, not

if either one was a list."

97

Tutoring: Guided learning by doing

Table 13: An example of a collaborative repair of a student error

1. SPSA Student: [typing]
(defun classify (var)

(cond ((null var) 'nil)
((numberp var) 'number)

2. TC Tutor: Right, urn hum, just the word number.
3 SPSA Student: [continues typing]

((t
[error: there should be only one parenthesis.]

4. PBF Now here you have the choice. You could either use t=
Student: =t
or the predicate=
Student: ok
or list.

5. SPSA Student: So I don't need that extra.
6. TCS Tutor: Right, you got it, you got it.
7. TID Tutor: That's kinda tough cause it's a weird pattern that these conds have.

Great.
8. SPSA Student: [typing]

£

98

Tutoring: Guided learning by doing

Table 14: The numbers in this table are the frequency of transitions between events. The
labels along the left side are the first event, and the labels along the top are the subsequent
event. For example, the leftmost number of the second row is 34. This number indicates
that there were 34 instances where a Student Problem Solving Action followed a Student
Ask for Help.

S Ask S S Check Tutor Tutor Tutor T Error T Assess T Check
SPSA or Help Confirm Answer PS Action Guidance Confirm Step FB Und Answer

SPSA 623 136 30 75 153 513 1744 397 156 78
S Ask for Help 34 0 6 3 19 68 501 67 23 23
S Confirm 282 56 33 29 130 311 807 36 92 201
S Check Answer 40 1 4 28 10 25 249 59 17 33
Tutor PS Action 120 2 168 21 15 18 42 17 15 22
T Guidance 561 63 343 30 29 93 112 30 33 30
Tutor Confirm Step 1495 302 923 168 72 273 493 47 58 US
T Error FB 231 43 222 25 14 48 64 14 18 17
T Assess Und 37 26 88 80 4 15 22 5 6 u
T Check Answer 23 124 230 33 14 7 22 61 9 J-:
TOTAL 3506 753 2047 495 460 1371 4056 733 427 552

99

Tutoring: Guided learning by doing

Figure Captions

Figure 1. A presentation of student and tutor actions and their chronological rela-

tionships. The half circles represent tutor events, and the squares within circles represent

student events. The arrows connecting objects describe which events followed other events

in the data. Darker links indicate high frequency transitions that occurred more than 100

times.

Figure 2. The number of events that intervened between a student error and the flag-

ging of that error by the student or the tutor. A lag of zero indicates that the error was

flagged during the same event within which it occurred.

Figure 3. The frequency of tutorial feedback that occurred in response to each type of

student error.

Figure 4. The median number of events required to repair each of the different types

of errors. Longer repairs indicate more difficult or more collaborative repairs.

Figure 5. The sequence of student and tutor collaborative actions when repairing an

error. The dotted lines represent infrequent transitions, less than 100 times out of the over

1,000 errors represented.

100

Student
Check
Answer

Fig.l

ü c
Q)

er
0

500-

400-

300-

200-

100-

■ Tutor-Caught Errors

D Student-Caught Errors

Lag

Fig. 2

■ Correction

I Surface Feature Feedback

E3 Plan-based Feedback

Syntactic Semantic Goal

Error Type

Fig.3

CD
Q
c
o
o
CD
i—.
i_
o
O

Syntactic Semantic Goal

Error Type

Fig.4

Other
Student
Problem
Solving
Action

Student
Problem
Solving
Action

Student
Confirmation

Repair Episode

Fie.5

